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Abstract

Non-invasive diagnostics and therapies are crucial to prevent patients from under-

going painful procedures. Exosomal proteins can serve as important biomarkers for

such advancements. In this study, we attempted to build a model to predict exoso-

mal proteins. All models are trained, tested, and evaluated on a non-redundant dataset

comprising 2831 exosomal and 2831 non-exosomal proteins, where no two proteins

have more than 40% similarity. Initially, the standard similarity-based method Basic

Local Alignment Search Tool (BLAST) was used to predict exosomal proteins, which

failed due to low-level similarity in the dataset. To overcome this challenge, machine

learning (ML) based models were developed using compositional and evolutionary

features of proteins achieving an area under the receiver operating characteristics

(AUROC) of 0.73. Our analysis also indicated that exosomal proteins have a variety

of sequence-based motifs which can be used to predict exosomal proteins. Hence, we

developed a hybrid method combining motif-based andML-based approaches for pre-

dicting exosomal proteins, achieving a maximum AUROC of 0.85 and MCC of 0.56 on

an independent dataset. This hybrid model performs better than presently available

methods when assessed on an independent dataset. A web server and a standalone

software ExoProPred (https://webs.iiitd.edu.in/raghava/exopropred/) have been cre-

ated to help scientists predict and discover exosomal proteins and find functional

motifs present in them.
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XGB, extreme gradient boosting.

1 INTRODUCTION

Protein secretion is crucial for a wide range of functions, including

communication among cells [1]. The majority of secreted proteins

in eukaryotes go along the (ER)-Golgi pathway [2]. This pathway is

guided via a signal peptide present on the N-terminus of the pro-

tein, also known as the leader sequence. It helps deliver the nascent

proteins from ER to the Golgi apparatus, which are then transported

to the cell surface via vesicles [3]. Apart from the classical path-

way, that is, the ER-Golgi pathway, some proteins are also secreted
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through unconventional pathways that are able to secrete the leader-

less proteins. Unconventional pathways involve both non-vesicular and

vesicular transport. In non-vesicular transport, proteins are secreted

into the extracellular space, whereas in vesicular transport, proteins

are secreted via vesicles. These vesicular structures comprise a variety

of classes, and among these classes, exosomes stand out [4, 5].

Exosomes belong to a class of extracellular vesicles with endoso-

mal origin are derived from cells, and range from size 30 to 150 nm

[6]. They facilitate interactions with the cellular environment and are

extensively found in bodily fluids like urine, saliva, blood, cerebrospinal

fluid, bile, breast milk, amniotic fluid, semen, epididymal fluid, and

sputum [7]. They are produced in the cytosol as a result of inward

budding on late endosomes to form intraluminal vesicles (ILVs) inside

a large multivesicular body (MVB) [8]. When MVB merges with the

plasmamembrane, ILVs are secreted as exosomes into the extracellular

environment [9]. Exosomes encompass a compound cargo of contents

arising from the original cell, including lipids, DNA, proteins, miRNA,

andmRNA (Figure 1) [10]. The content carried by exosomes can change

in diseased conditionsmaking it a useful entity for biomarker detection

[11]. Exosome-based diagnostics are more specific and sensitive than

liquid biopsy or conventional biopsy biomarkers due to their high sta-

bility in body fluids [12, 13]. In addition, exosomal markers are readily

available from most biofluids which makes exosome-based diagnos-

tics labor and cost-effective [14, 15]. Since proteins and peptides are

the most widely studied macromolecules as biomarkers, identifying

and annotating exosomal proteins can help develop the least-invasive

novel diagnostic methods as well as therapies for various diseases

[16–18]. The proteins extracted from the circulating exosomes can give

us comprehensive information about a specific disease – for exam-

ple – exosomal proteins can give us important evidence about distal

tumors, which is otherwise difficult to obtain due to complex diagnos-

tic methods like tissue biopsy [16]. Extracting proteins from exosomes

is more efficient than extracting them from blood, as blood has many

substances [19].

Identifying proteins secreted by cells via exosomes has its own chal-

lenges, as cells produce a wide range of highly similar proteins. In

addition, exosomes arise from a range of different cell types, and it

would be difficult to determine their origin tissue unless they carry

extremely specific cargo [20]. Thus, it is crucial to develop a compu-

tational method that can predict proteins secreted by exosomes. In

this direction, there are several existing methods to predict classical

and non-classical secreted proteins that include SRTpred, OutCyte,

SecretP, SPRED, and SecretomeP 2.0 [21–25]. None of them has been

specifically trained on proteins secreted by exosomes or have discov-

ered motifs found in exosomal proteins. There is only one method

ExoPred, that is trained on exosomal proteins for vertebrates [26].

To complement presently available methods, we made a system-

atic attempt to build a classifier that can annotate human exosomal

proteins accurately.Wehaveused awide range ofmodel-building tech-

niques, different types of protein features, and amotif-based approach

(see Figure 2). In addition, we have provided users with a novel method

to predict exosomal motifs in the sequences. This can help researchers

in designing and discovering new exosomal proteins.

Significance Statement

Problem: Identification of secretory proteins in body fluids is

one of the key challenges in the development of non-invasive

diagnostics. It has been shown in the past that a significant

number of proteins are secreted by cells via exosomes called

exosomal proteins.

What is already known: The pre-existingwebservers are able

to predictwhether a protein is secreted fromunconventional

pathways. There is only one existing software that particu-

larly predicts exosomal proteins; however, it is not able to

predict the same accurately.

What this paper adds: We have attempted to create a web-

server that is able to predict exosomal proteins accurately. In

addition, it also gives the users functional motifs specific to

exosomal proteinswhichwe believewill be useful in develop-

ing novel protein sequences for exosomal drug delivery and

getting an understanding of the mechanism of how proteins

are transported via exosomes.

2 MATERIALS AND METHODS

2.1 Compilation and processing of the dataset

The data used in this research work was retrieved from UniProt

release 2022_02 (Released on May 25, 2022) and from the ExoPred

dataset [26, 27]. We retrieved 2178 exosomal proteins from UniProt

using the followingqueries; (i) (go:0070062)AND(reviewed:true)AND

(organism_id:9606), (ii) “extracellular exosome” AND (reviewed:true)

AND(organism_id:9606), and (iii) “exosome”AND(reviewed:true)AND

(organism_id:9606). In addition, we retrieved 2551 exosomal proteins

from the ExoPred dataset, which are reviewed proteins belonging to

humans. After compiling the data extracted from UniProt and Exo-

Pred, we had a total of 3915 exosomal proteins. Similarly, we extracted

18,207 non-exosomal proteins fromUniProt using the following query,

NOT (go:0070062) NOT Exosomes NOT “Extracellular exosome” NOT

ExosomeAND (reviewed:true) AND (organism_id:9606).We also com-

bined these non-exosomal proteins with the non-exosomal proteins

from the ExoPred dataset. Finally, we got 20,330 unique non-exosomal

proteins after removing duplicates.We also removed proteins consist-

ing of non-standard amino acids “BJOUXZ” and sequenceswith lengths

<55 and >1500. Finally, we obtained 2831 non-redundant exosomal

proteins after discarding redundant sequences using CD-HIT software

where no two proteins have more than 40% similarity [28]. Similarly,

we obtained 10,680 non-exosomal proteins after removing redundant

sequences. The final dataset contains 2831 exosomal and 2831 non-

exosomal (randomly selected from 10,680 non-exosomal sequences)

proteins.
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F IGURE 1 Mechanism of formation of exosomes.

F IGURE 2 Flowchart of themethodology followed in the study.

2.2 Feature generation

To develop a prediction model to classify proteins, we need a set of

features for every protein.

A number of feature encoding techniques have been used

in previous studies [29–32]. We used a standalone tool called

Pfeature to compute numerous features for the proteins, including

evolutionary information-based features and composition-based

features [33].

2.2.1 Composition-based features

The composition-based feature module available on Pfeature provides

a vector of 9163 features for every protein in the positive (exoso-

mal) and negative (non-exosomal) dataset like amino acid composition

(AAC), tri-peptide composition (TPC), di-peptide composition (DPC),

andmanymore.

2.2.2 Evolutionary features

The evolutionary features of a protein are known to provide addi-

tional important information about proteins than its other primary

sequence features [34, 35]. The evolutionary information can be

retrieved by calculating the position-specific scoring matrix (PSSM)

profile using Position-Specific Iterated Basic Local Alignment Search

Tool (PSI-BLAST) for each protein [36]. In PSSM, we obtain a matrix

containing the dimensions 20 × length of sequence for protein or

peptide sequences. As we are using multiple sequences together for

the prediction, we need a fixed-length vector to develop machine

learning (ML) models. Hence, we have used PSSM-400 composition

profiles as evolutionary features, which have been described in ear-

lier studies [35]. PSSM-400 is a fixed 20 × 20 dimension vector for

a protein sequence which comprises the measure of occurrences of
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20 amino acids in the sequence. We have created a PSSM matrix

for each sequence which was first normalized within the range

of 0–1 and converted into a PSSM composition of size 20 × 20

vector [33].

2.3 Feature selection

It has been shown earlier that all the features extracted from a pro-

tein are not relevant, and there is a need to select only the useful ones

fromabig set of features [37]. To achieve the same,we appliedRFE fea-

ture selection techniqueusing LogisticRegression (LR) as theestimator

[38]. We selected the top 20 and top 50 most relevant compositional

features and evolutionary features (PSSM composition), respectively.

This feature selection method keeps removing the weakest features

from the set until a specified number of features has been reached. The

features were selected from the standardized data that was obtained

using StandardScaler method [39]. The features that were top-ranked

were then used to create several machine-learning prediction models

for the dataset. The features used in the ML models are described in

Table S1.

2.4 Similarity search using BLAST

BLAST version-2.2.29+ is widely used to identify and annotate protein

and nucleotide sequences [40]. In this research study, we tried to use

BLAST for the identification of exosomal proteins. It is based on the

protein sequence similarity with exosomal and non-exosomal protein

sequences. The protein query sequences were made to hit against a

database of exosomal and non-exosomal protein sequences.

Weapplied three approaches to identify exosomal sequences,which

involved taking into account the top hit, top three hits, and top five hits

at various E-value cut-offs. In the first strategy, that is, first hit, – the

sequence is identified as exosomal or non-exosomal based on its first

hit against thewhole database. However, for the top three and five hits,

a voting approach is considered, and a sequence is identified as exoso-

mal if top three or five hits have the maximum of exosomal proteins.

The non-exosomal proteins are also characterized in the samemanner.

For this, a minimum of three or five hits must be available for voting.

The performance of these three strategies was recorded for different

E-values. Several researchers have used this methodology to identify a

protein sequence [35, 41].

2.5 Motif search

It is essential to recognize the functional motifs present in the pro-

tein or peptide sequences for their functional annotation as well as

to classify the negative and positive datasets. In this study, we used

Motif Emerging with Classes Identification (MERCI) program to find

motifs in both exosomal and non-exosomal protein sequences [42].

MERCI selects specificmotifs in the positive dataset by comparing neg-

ative and positive input sequences. Hence, to retrieve the particular

motifs in exosomal and non-exosomal protein sequences, we followed

a two-step procedure that involved – (a) Providing exosomal proteins

as positive input and non-exosomal proteins as negative input and find-

ing motifs for exosomal protein sequences, (b) Reversing the order for

positive and negative input to find motifs for non-exosomal protein

sequences.

We used different options available inMERCI to extract motifs that

are exclusive as well as inclusive to both sets. By default, MERCI takes

the maximal frequency of the negative sequences (fn) as zero, which

gives only exclusive motifs, that is, the motifs that are not common in

positive and negative sets. We increased this value to fn = 8 to obtain

inclusive motifs as well. Within the exclusive and inclusive motifs, we

got different kinds ofmotifs by specifying somevalues that include– (a)

No gap, (b) Gap= 1, (c) Gap= 2, and (d) Class= Koolman–Rohm. After

that, the unique proteins containing motifs were selected to compute

the overall coverage of motifs in the protein sequences.

2.6 ML classifiers

We have employed several ML algorithms to differentiate between

exosomal and non-exosomal proteins. These algorithms involve Gaus-

sian Naïve Bayes (GNB), K-Nearest Neighbors (KNN), Decision Tree

(DT), ExtremeGradientBoosting (XGB), LogisticRegreLR, SupportVec-

tor classifier (SVC), and random forest (RF). The parameters of these

algorithmswere optimized using hyperparameter tuning.

2.7 Performance metrics calculation and
cross-validation

The whole dataset was divided into the ratio of 80:20, where 80%

comprised the training and 20% validation data. The five-fold cross-

validation technique was applied to 80% of the training data to assess

the ML models, and the remaining 20% was kept unknown to the

models. In the five-fold cross-validation technique, 80% of training

data is split into five parts where four folds are used for training,

and the left one fold is used as a test set for internal validation pur-

poses. This procedure is reiterated five times so that every fold gets

a chance to be the test fold. The ML models used in this study have

been evaluated using performance metrics which include parameters

dependent and independent of the threshold. The different standard

evaluation metrics that have been used in this study include sensitiv-

ity, specificity, Matthews correlation coefficient (MCC), accuracy, and

area under the receiver operating characteristics (AUROC). Out of

these, AUROC is threshold-independent, and the rest of the parame-

ters are threshold-dependent. The threshold-dependent parameters,

like specificity, sensitivity, andMCC,wereoptimized toobtain a thresh-

oldwith themaximumvalues. Thesemetrics have beenpreviously used

in studies to estimate the performance ofMLmodels [43–45].

Specificity =
TN

TN + FP
× 100 (1)
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Sensitivity =
TP

FP + TN
× 100 (2)

Accuracy =
TP + TN

TN + TP + FN + FP
× 100 (3)

Specificity =
TN

TN + FP
× 100 (4)

where TP, FP, TN, and FN are true positive, false positive, true negative,

and false negative, respectively.

2.8 Hybrid model

To improve the prediction of MLmodels, we applied a hybrid approach

that integrates and employs the various results obtained in this study.

The hybrid approach uses a weighted scoring method in which the

scores are calculated by combining two methods (i) Motif-based

approach and (ii) ML-basedmethods. In this hybridmodel, we assigned

a score of+0.5 if a protein sequence had an exosomal motif and−0.5 if

it had a non-exosomal motif, and 0 if no motif was found. These scores

were combined with the ML prediction scores, which were obtained

using the predict_proba() function. It gave us the probability of a pro-

tein belonging to a particular class instead of a binary result. The motif

score and ML score together formed an overall score for every pro-

tein ranging from −0.5 to +1.5. The scoring method is described in

Equation (5). The sequences were categorized as exosomal and non-

exosomal by analyzing the overall scores. A number of studies have

used this hybrid approach earlier [41, 46].

S′ =

⎧
⎪
⎨
⎪
⎩

S + 0.5 If exosomal motif present

S − 0.5 If non-exosomal motif present

S If no motif is found

(5)

Here, S = Prediction score obtained from ML-based approach,

S′ = Hybrid score ranging from −0.5 to 1.5 obtained by ML-based and

motif-based approaches.

3 RESULTS

3.1 Amino acid composition analysis

After analyzing and comparing theAACof exosomal and non-exosomal

proteins, we have discovered that there is only a slight amount of

difference in the average AACs. However, we performed a two-sided

Mann–WhitneyU test on the data to compare the AACs of both exoso-

mal and non-exosomal protein groups. The two-sided Mann–Whitney

U test is used to compare the central tendenciesof the twogroupswith-

out making any assumption on the distribution of the data. We found

that the difference between the averages in these groups was signif-

icant for about 15 amino acids, and the p-values for each amino acid

are given in Table S2 and shown in Figure 3. The maximum difference

between averages was observed in AACs of serine (0.93) followed by

leucine (0.76) and proline (0.64) with a p-value< 0.05.

3.2 BLAST performance

BLAST is widely used to annotate and recognize the role of a query

protein sequence on the basis of similarity search. We attempted

to utilize BLAST in this study to classify proteins as exosomal and

non-exosomal. We used five-fold cross-validation to evaluate the per-

formance of BLAST. Firstly, the sequences in four folds are used to

create a database, and the sequences present in the fifth fold are used

to hit against the sequences present in the respective database. This

procedurewas repeated five times. To evaluateBLASTperformance on

the validation dataset, we constructed a database using all the training

sequences, and those in the validation set were searched against the

database. We used BLAST in three ways – (a) top hit, (b) top 3 hits, and

(c) top 5 hits. The top hit is a standard method that assigns a class to

the protein based on the first hit, whereas the top 3 and top 5 criteria

assign a class to the protein on the basis of the class that appears the

maximumnumber of times in the first 3 and 5 hits.We have considered

the top 3 and 5 hits as sometimes the top hit is not always the most

relevant one. However, even after trying all these criteria, wewere get-

ting a large number of false positives and false negatives. We obtained

18.06%, 11.08%, and 8.39% sensitivity (number of correct hits) for the

training dataset, whereas the sensitivity of 17.92%, 11.39%, and 8.65%

was obtained for the validation dataset for top 1, top 3, and top 5 hits,

respectively. With the increment of the E-value, the error rate was

also increasing. For the training set, we got 9.45%, 4.75%, and 3.2%,

and for the validation set, we got 12.97%, 7.41%, and 6% for top 1,

top 3, and top 5 hits, respectively. The results for BLAST are shown in

Table 1.

3.3 ML models

For each protein sequence in the dataset, a total of 9163 features

were computed that constituted more than ten types of compositional

features. Alongwith the composition-based features, evolutionary fea-

tures were also computed. We first developed ML models on features

like AAC and PSSM Composition which led to an AUROC of 0.70 on

RF model and 0.72 on LR model, respectively. The results for AAC and

PSSM composition are given in Table 2.

In order to improve themodel’s performance,we performed feature

selection on the set of 9163 features using the feature selection tech-

nique – RFE. The best-performing ML model was RF model on 70 fea-

tures containing the top 20 compositional features and top 50 evolu-

tionary (PSSM) features. It obtainedanAUROCof0.73 for the indepen-

dent validation set. The detailed results for all ML models performed

for selected features is given in Table 3. The ML models were devel-

oped using the scikit-learn package in Python, and hyperparameter
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F IGURE 3 Amino acid composition analysis for exosomal and non-exosomal proteins.

tuning was done to augment the algorithms using grid search [39].

Grid search finds the combination of best hyperparameters for a given

model by exhaustively generating candidates from the grid of param-

eter values. The parameters used for each algorithm are described in

Table S3.

3.4 Compositional features

The AAC for the exosomal and non-exosomal proteins was calculated

to build the ML models. The RF model was observed to perform well

than other models andwas able to achieve an AUROC of 0.71 and 0.70

on training and validation sets, respectively. The performance of AAC

for the dataset is given in Table 2.

3.5 Evolutionary features

The ML models were also developed on the basis of evolutionary

information. To obtain the evolutionary information, we computed the

PSSM profiles of each protein which were then fed to our ML mod-

els. It was observed that the LR model was performing best on these

features and achieved the AUROC of about 0.73 and 0.72 for training

and validation sets. The performance of PSSM-basedmodels is given in

Table 2.

3.6 Feature selection

A total of 9163 composition-based features were generated, which

were short-listed to the top 20 features using the RFE feature selec-

tion method based on the LR estimator. These 20 features attained

an AUROC of 0.71 on training and 0.71 on validation sets based

on the SVC. We also selected the top 50 features for evolutionary

information-based features using the same technique, which yielded

the AUROCs of 0.74 on training and 0.71 on validation sets using a RF

classifier.We also compiled the top 20 compositional and top 50 evolu-

tionary features,which resulted in amatrix of a total of 70 features. The

combination of these features was able to achieve the AUROCs of 0.75

on training and 0.73 on validation sets. The results for all the selected

features are shown in Table 3.

3.7 Top selected features

The top compositional features include Amino Acid Index (AAI), Atom

Composition (ATC), Pseudo Amino Acid Composition (PAAC), Shannon

Entropy (SEP), Quasi-Sequence Order (QSO), and Shannon Entropy

of Residue Level (SER). Amongst these, it was observed that three of

the relevant features include SER, QSO, and PAAC of tryptophan (W),

which indicates that tryptophan can be an important amino acid for dif-

ferentiating between exosomal and non-exosomal proteins. Alongwith

this, it was observed that the ATC of Nitrogen and Sulphur were also

two of the critical features in predicting exosomal proteins.

3.8 Motif search

We attempted to identify the exclusive and inclusive set of motifs

present in exosomal and non-exosomal proteins using the publicly

available MERCI program. To achieve this, we extracted motifs using

different parameters like – (a) no gap, (b) gap = 1, (c) gap = 2, and
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TABLE 1 Results for top 1, top 3, and top 5 hits in Basic Local Alignment Search Tool (BLAST) for validation set searched against the training
set database (here, sens= sensitivity and spec= specificity).

Top 1 Training Validation

Exosomal Non-exosomal Exosomal Non-exosomal

e-values Sens Error Spec Error Sens Error Spec Error

10-6 18.06 9.45 10.29 10.86 17.92 9.97 13.24 12.97

10-5 18.75 9.74 10.8 11.28 18.45 10.41 14.03 13.06

10-4 19.17 10.11 11.3 11.57 19.24 10.68 14.56 13.77

10-3 19.96 10.69 11.99 12.14 19.59 11.3 15.45 13.86

10-2 20.71 11.35 12.83 12.89 20.12 11.83 16.42 14.74

10-1 22.26 12.52 14.09 14.68 21.09 12.53 18.01 16.24

Top 3 Training Validation

Exosomal Non-exosomal Exosomal Non-exosomal

e-values Sens Error Spec error Sens Error Spec Error

10-6 11.08 4.75 6.12 6.65 11.39 4.5 6.35 7.41

10-5 11.99 5.03 6.49 6.98 12 4.94 6.8 7.86

10-4 12.74 5.37 6.91 7.51 12.53 5.12 7.15 8.38

10-3 13.58 5.85 7.37 7.84 13.24 5.65 7.86 8.74

10-2 14.55 6.51 8.06 8.54 13.95 6.18 8.91 9.36

10-1 15.9 7.24 9.07 9.32 15.09 6.97 10.24 10.59

Top 5 Training Validation

Exosomal Non-exosomal Exosomal Non-exosomal

e-values Sens Error Spec Error Sens Error Spec Error

10-6 8.39 3.2 4.22 5.12 8.65 3.35 4.94 6

10-5 8.9 3.44 4.7 5.5 8.91 3.8 5.12 6.62

10-4 9.43 3.73 4.86 5.9 9.89 4.06 5.74 6.88

10-3 10.16 4.15 5.45 6.34 10.68 4.41 6.53 6.97

10-2 10.97 4.46 6.01 6.76 11.39 4.85 6.88 7.68

10-1 12.1 5.06 7 7.33 12.53 5.74 7.68 8.38

(d) class = Koolman–Rohm. By default, MERCI takes fn (maximal fre-

quency in negative sequences) as zero, which gives exclusive motifs;

we increased it to fn = 8 to get inclusive motifs for both negative and

positive datasets. Altogether, MERCI provided 89 motifs in exosomal

and 130 motifs in a non-exosomal set that covered 1441 exosomal

and 1373 non-exosomal sequences. The top 5 motifs in each category

for the exclusive and inclusive sets and the number of sequences they

occurred in are given in Table 4. It is observed that most of the motifs

crucial for predicting exosomal proteins consisted of aliphatic amino

acids.

3.9 Hybrid approach

Since we were getting a good sequence coverage using the motif

search, we decided to combine motif prediction with ML-based pre-

diction. In this hybrid model, we allotted a protein sequence a score of

+0.5 if an exosomal motif was present, −0.5 if a non-exosomal motif

was present, and 0 if none were present. These scores were compiled

with the scores obtained from ML-based predictions. After merging

the motif prediction scores with RF model prediction based on AAC,

we acquired an AUROC of 0.86 for training and 0.84 for the valida-

tiondataset.Wealsomerged themotif prediction scoreswithRFmodel

prediction based on the top 70 features (20 compositional and 50 evo-

lutionary), which attained an AUROC of 0.87 for training and 0.85 for

thevalidation set. Theperformanceofothermodels hasbeenexplained

in Table 5. The AUROC plots for training and validation sets forML and

hybrid models are illustrated in Figure 4.

3.10 Web server development

We developed a web server – ExoProPred (https://webs.iiitd.edu.in/

raghava/exopropred/) to predict exosomal proteins. We have inte-

grated our two best-performing hybrid models — (a) AAC combined

with MERCI and (b) Top 70 features combined with MERCI. The web
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TABLE 2 Results forMLmodels developed for AAC and PSSM composition features.

Amino acid composition (AAC)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 59.75 59.92 59.84 0.62 0.20 50.18 61.75 56.13 0.58 0.12

RF 64.58 66.15 65.36 0.71 0.31 64.91 65.01 64.96 0.70 0.30

LR 63.04 65.21 64.12 0.69 0.28 59.09 63.47 61.34 0.67 0.23

XGB 63.92 64.68 64.30 0.70 0.29 61.64 65.35 63.55 0.70 0.27

KNN 62.87 65.30 64.08 0.69 0.28 64.36 60.89 62.58 0.68 0.25

GNB 61.68 62.32 62.00 0.67 0.24 60.00 62.26 61.17 0.64 0.22

SVC 64.93 64.99 64.96 0.70 0.30 62.36 61.92 62.14 0.68 0.24

PSSM composition

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 57.87 58.26 58.06 0.62 0.16 56.36 54.72 55.52 0.59 0.11

RF 68.30 66.76 67.54 0.73 0.35 66.73 65.87 66.28 0.71 0.33

LR 67.91 67.29 67.60 0.73 0.35 65.09 67.24 66.20 0.72 0.32

XGB 65.28 64.80 65.04 0.71 0.30 64.91 61.41 63.11 0.70 0.26

KN 66.37 64.93 65.66 0.71 0.31 65.46 59.18 62.22 0.69 0.25

GNB 67.51 60.48 64.02 0.68 0.28 63.82 59.52 61.61 0.67 0.23

SVC 67.82 66.89 67.36 0.73 0.35 65.82 65.87 65.84 0.71 0.32

AUC, areas under the curve; DT, Decision Tree; GNB, GaussianNaïve Bayes; KNN, K-NearestNeighbors; LR, Logistic Regression;MCC,Matthews correlation

coefficient;ML,machine learning; PSSM, position-specific scoringmatrix; RF, random forest; SVC, SupportVector classifier; XGB, ExtremeGradientBoosting.

server incorporates the key modules, including (a) prediction, (b) motif

scan, and (c) download. The “prediction module” allows users to sub-

mit their query protein sequences in FASTA format. This module can

predict exosomal and non-exosomal proteins effectively. The second

module, “motif scan,” can identify the motifs present in exosomal and

non-exosomal protein sequences using theMERCI software. Thismod-

ule can also scan or map the motifs present in the protein sequence

query entered by the user and differentiates between them as exoso-

mal or non-exosomal sequences. The web server has been developed

on a responsive HTML template and is compatible with various oper-

ating systems. We also built a Python-based standalone package of

ExoProPred to help users easily predict and classify the sequences at

a large scale which can be downloaded from the “downloadmodule” on

the web server.

3.11 Comparison with other prediction tools

Presently, there is only one tool that predicts exosomal proteins –

ExoPred. Other tools, such as SecretomeP 2.0, and Outcyte, pre-

dict whether the protein is following an unconventional pathway [21,

22]. We entered our validation set of 569 sequences into each of

the servers after subtracting the sequences taken from the ExoPred

dataset and performing a comparative analysis. ExoPred was able to

predict the sequenceswith 66.08% accuracy [26]. However, it had very

low sensitivity but high specificity, whichmeans it is able to predict the

non-exosomal sequences but not able to classify exosomal sequences

correctly. For SecretomeP 2.0, we selected the “mammalian” option on

the web server, and as indicated on their webpage, proteins with “NN

score” higher than 0.6 are said to be secreted via unconventional path-

ways. After setting this threshold, we found that it was able to predict

exosomal sequences with 54.83% accuracy [24]. In the Outcyte web

server, we selected Outcyte UPS (Unconventional protein secretion

option) and obtained an accuracy of 61.16% for our validation set, with

low sensitivity and comparatively higher specificity [21]. On entering

these sequences on our web server – ExoProPred, we obtained an

accuracy of 79.4%, which is higher than all the above-mentioned tools.

ExoProPred is also able to achieve a balanced sensitivity and specificity

along with the highest accuracy. The full comparison of prediction by

web servers is given in Table 6.

4 DISCUSSION

There is a need to develop non-invasive diagnostic methods and thera-

pies toprevent patients fromgoing throughpainfulmedical procedures

to get treatment. Exosomal biomarkers can be found in body fluids

(saliva, blood, urine, etc.) in abundance and can be used to detect a

disease or develop a treatment for different types of conditions [11].

These biomarkers are derived from the parent cells and are even more
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TABLE 3 Results forMLmodels developed for the top 20 composition features, top 50 evolutionary (PSSM) features, and combination of top
selected composition and evolutionary (PSSM) features.

20 selected composition-based features

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 59.75 59.16 59.46 0.62 0.19 60.55 55.06 57.72 0.61 0.16

RF 63.00 64.37 63.68 0.69 0.27 60.00 62.95 61.52 0.68 0.23

LR 64.67 65.61 65.14 0.71 0.30 64.18 63.47 63.81 0.70 0.28

XGB 64.23 64.37 64.30 0.69 0.29 63.27 64.15 63.73 0.70 0.27

KNN 62.03 63.21 62.62 0.67 0.25 61.27 61.75 61.52 0.67 0.23

GNB 58.44 58.63 58.53 0.63 0.17 54.73 57.80 56.31 0.62 0.13

SVC 65.28 65.13 65.20 0.71 0.30 66.36 65.52 65.93 0.71 0.32

50 selected evolutionary-based features (PSSMComposition)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 58.40 59.55 58.97 0.62 0.18 58.91 57.46 58.16 0.62 0.16

RF 67.21 69.25 68.22 0.74 0.37 67.64 65.70 66.64 0.71 0.33

LR 67.69 66.67 67.18 0.73 0.34 65.09 63.47 64.25 0.69 0.29

XGB 65.67 65.82 65.75 0.72 0.32 66.73 61.92 64.25 0.69 0.29

KN 64.58 65.69 65.13 0.71 0.30 65.46 60.21 62.75 0.68 0.26

GNB 65.19 65.38 65.28 0.70 0.31 64.00 62.26 63.11 0.68 0.26

SVC 66.94 67.33 67.14 0.73 0.34 64.36 63.29 63.81 0.69 0.28

70 selected features (20 compositional and 50 evolutionary (PSSM) )

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 59.49 60.13 59.81 0.63 0.20 56.00 64.15 60.19 0.61 0.20

RF 67.08 69.47 68.26 0.75 0.37 66.91 67.07 66.99 0.72 0.34

LR 68.83 67.82 68.33 0.75 0.37 68.55 64.67 66.55 0.73 0.33

XGB 66.64 66.22 66.43 0.73 0.33 64.91 64.84 64.87 0.72 0.30

KN 63.57 64.04 63.80 0.69 0.28 66.00 63.81 64.87 0.70 0.30

GNB 64.14 64.53 64.33 0.70 0.29 64.36 63.12 63.73 0.68 0.28

SVC 68.70 67.82 68.26 0.75 0.37 66.91 65.87 66.37 0.72 0.33

AUC, areas under the curve; DT, Decision Tree; GNB, GaussianNaïve Bayes; KNN, K-NearestNeighbors; LR, Logistic Regression;MCC,Matthews correlation

coefficient;ML,machine learning; PSSM, position-specific scoringmatrix; RF, random forest; SVC, SupportVector classifier; XGB, ExtremeGradientBoosting.

specific and sensitive than those extracted directly from the body flu-

ids because the exosome is highly stable and non-immunogenic [47].

Among thediseasebiomarkers, proteinshavebeenbroadly studiedand

can be used for the diagnosis, prognosis, and treatment of specific dis-

eases [16–18]. However, it is difficult to identify these proteins as they

are extremely similar to those produced by the cells, and there is amix-

ture of exosomes in the biofluids derived from different types of cells

[20]. Toovercome this limitation,wemadeaneffort todevelopapredic-

tion server ExoProPred, that classifies the proteins into exosomal and

non-exosomal.

In this study, we created a dataset for 2831 exosomal and 2831non-

exosomal proteins extracted from UniProt and ExoPred servers [26,

27]. A number of features were generated for the protein sequences

(∼9163 features). Firstly, we used features like AAC (20 features)

and PSSM composition (400 features) to develop ML models, which

resulted in an AUROC of 0.70 on RF model and 0.72 on LR model,

respectively. The possible reasons why algorithms like LR outper-

formed powerful ML algorithms such as SVC and RF in PSSM could be

— (a) LR assumes a linear relationship between the predictor variables

and outcome variable. PSSM scores are a natural fit for this assump-

tion as they represent a linearly scaled measure of the evolutionary

conservation at each residue position, (b) In PSSM-based classifica-

tion tasks, some residues may have weak or noisy signals, and even

though algorithms like SVM are more robust to noise than LR, they

might fail if the noise is too high and there are many outliers in the

data.
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TABLE 4 Top 5motifs exclusive and inclusivemotifs and the number of sequences in which they occurred (a) no gap, (b) gap= 1, (c) gap= 2,
and (d) class=Koolman–Rohm (fn=maximal frequency in negative sequences, pos= occurrence in positive sequences, neg= occurrence in
negative sequences).

Exclusivemotifs (fn= 0) Inclusivemotifs (fn= 8)

Motifs Pos Neg Motifs Pos Neg

No gap

IATG 14 0 HSASA 32 7

NRAL 13 0 PVLRRN 32 7

RIHTG 12 0 RLKCH 31 7

EKYL 12 0 SPPKC 31 8

IKAK 12 0 RLKTH 30 8

Gap= 1

E RD gap E R 16 0 A I E gap T 41 8

GG L gap V L 16 0 P F gap R L 41 8

Q gap L S R L 16 0 I gap R V R 39 8

A L A E gap G 15 0 DR gap A I 37 7

A I gap E E L 14 0 D gap R A I 37 8

Gap= 2

I gap I gap S GG 22 0 F gapDR gap F 40 8

E E V gap G gap K 19 0 FD gap R gap F 39 8

D E gap G gapQV 18 0 RD gapD gap Y 37 7

E L E E gap L gapQ 18 0 E KA gap L gap A 36 7

GDA gapD gap L 18 0 – – –

Class=Koolman–Rohm

Neutral G K T S 20 0 A I acidic T 43 6

E A E aliphatic aliphatic neutral aliphatic 20 0 D aliphatic D acidic aliphatic aliphatic 42 8

Aliphatic N aliphatic basic K aliphatic aliphatic 19 0 L E basic aliphatic aliphatic E 41 8

G acidic acidic K acidic 18 0 Acidic aliphatic K neutral Y 41 8

F aliphatic K acidic F 18 0 Acidic acidic aliphatic K aliphatic aliphatic aliphatic 40 8

Secondly, we tried to increase the performance of ML models

by selecting only the relevant features that were mined from a big

set of features using Recursive Feature Elimination (RFE). The best-

performing model was RF model that was trained on 70 features (20

compositional and 40 PSSM features). It obtained an AUROC of 0.73

on an independent validation set. The top 20 compositional features

included AAI, ATC, PAAC, SEP, QSO, and SER. Additionally, it was also

observed that amino acids like serine, leucine, and proline showed

the maximum difference in average AACs between exosomal and

non-exosomal proteins.

Besides the development of ML models on selected essential fea-

tures, we also applied theBLAST tool to identify the exosomal proteins,

as this tool has been widely used to annotate the query proteins [40].

However, we were not able to obtain very high performance with

BLAST.Anexplanation for this couldbe that exosomal proteins are very

similar to the proteins present in their parent cell; hence, it must be dif-

ficult to point out which protein belongs to the exosome. We decided

to exclude BLAST-based performance from our hybrid model, and to

boost the performance of the hybrid model; we added a motif-based

approach using MERCI in which we obtained 89 exosomal and 130

non-exosomal motifs covering 1441 exosomal and 1373 non-exosomal

sequences [42]. In this study, we have identified novel exosomal and

non-exosomal motifs using various methods like (1) no gap, (2) gap= 1,

(3) gap= 2, and (4) class=Koolman–Rohmwhich are found exclusively

as well as inclusively in both classes (exosomal and non-exosomal). On

analyzing the top motifs obtained for the classification of exosomal

and non-exosomal sequences, we observed thatmostmotifs contained

aliphatic amino acids.

The motif-based approach was able to cover a high amount of

exosomal sequences. Hence, we combined this approach with the

top-selected features to develop a hybrid model to predict exosomal

protein sequences. We are able to achieve an accuracy of 78% and an

AUROC of 0.85 with balanced specificity and sensitivity on an inde-

pendent validation set. In addition to this, we obtained the highest

accuracy for a validation set of 569 sequences when compared to

other prediction web servers like Outcyte, ExoPred, and SecretomeP

2.0. The accuracy obtained by Outcyte, ExoPred, SecretomeP 2.0, and

ExoProPred are 61.16%, 66.08%, 54.83, and 79.40%, respectively.
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TABLE 5 Results of hybrid approach (a)MERCI+ML (AAC), (b)MERCI+ML (top 20 compositional features), (c) MERCI+ML (top 50 PSSM
features), (d)MERCI+ML (top 70 features – compositional and evolutionary).

AAC

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 72.42 73.71 73.06 0.8 0.46 66.73 74.44 70.7 0.78 0.41

RF 76.85 77.31 77.08 0.86 0.54 77.27 75.64 76.43 0.84 0.53

LR 76.46 75.89 76.18 0.85 0.52 74.91 74.44 74.67 0.84 0.49

XGB 76.11 76.69 76.4 0.85 0.53 76.55 75.99 76.26 0.84 0.53

KNN 76.33 75.93 76.13 0.85 0.52 78.18 72.9 75.46 0.84 0.51

GNB 73.91 73.67 73.79 0.82 0.48 73.27 70.84 72.02 0.79 0.44

SVC 76.24 77.58 76.9 0.85 0.54 74.91 74.44 74.67 0.84 0.49

20 selected features (compositional)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 71.85 73.62 72.73 0.81 0.45 72.55 71.01 71.76 0.80 0.44

RF 75.67 74.96 75.31 0.85 0.51 75.64 74.27 74.93 0.83 0.50

LR 76.85 76.82 76.84 0.86 0.54 76.00 74.96 75.46 0.85 0.51

XGB 75.76 75.67 75.71 0.84 0.51 75.27 74.96 75.11 0.84 0.50

KNN 74.05 75.53 74.78 0.84 0.50 74.00 74.44 74.23 0.83 0.48

GNB 70.89 70.73 70.81 0.79 0.42 70.18 68.95 69.55 0.78 0.39

SVC 77.33 76.29 76.82 0.85 0.54 76.91 76.16 76.52 0.84 0.53

50 selected evolutionary features (PSSM)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 73.13 71.83 72.48 0.80 0.45 72.00 71.70 71.84 0.80 0.44

RF 77.29 79.93 78.60 0.87 0.57 77.64 77.19 77.41 0.85 0.55

LR 77.55 78.91 78.22 0.86 0.56 76.00 75.47 75.73 0.84 0.51

XGB 75.93 77.57 76.74 0.86 0.54 78.00 75.81 76.88 0.84 0.54

KNN 75.41 77.88 76.63 0.86 0.53 76.55 73.07 74.76 0.84 0.50

GNB 77.90 73.56 75.75 0.83 0.52 77.82 71.36 74.49 0.81 0.49

SVC 78.21 78.50 78.36 0.86 0.57 76.18 74.27 75.20 0.84 0.50

70 selected features (20 compositional and 50 evolutionary)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

DT 72.56 73.12 72.84 0.80 0.46 71.09 73.41 72.29 0.79 0.45

RF 78.17 78.86 78.51 0.87 0.57 79.82 76.16 77.93 0.85 0.56

LR 78.83 77.84 78.33 0.87 0.57 78.18 75.64 76.88 0.85 0.54

XGB 77.51 77.13 77.32 0.86 0.55 75.82 75.30 75.55 0.85 0.51

KNN 74.27 76.68 75.46 0.85 0.51 77.27 75.47 76.35 0.84 0.53

GNB 74.40 74.23 74.32 0.82 0.49 74.36 71.18 72.73 0.81 0.46

SVC 77.99 79.22 78.60 0.87 0.57 76.91 77.99 77.05 0.85 0.54

AAC, amino acid composition; AUC, areas under the curve; DT, Decision Tree; GNB, Gaussian Naïve Bayes; KNN, K-Nearest Neighbors; LR, Logistic Regres-

sion; MCC, Matthews correlation coefficient; MERCI, Motif Emerging with Classes Identification; ML, machine learning; PSSM, position-specific scoring

matrix; RF, random forest; SVC, Support Vector classifier; XGB, ExtremeGradient Boosting.
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F IGURE 4 Area under the receiver operating characteristics (AUROC) plots for (A) training set inMLmodel, (B) validation set inMLmodel, (C)
training set in the hybrid model, and (D) validation set in the hybrid model.

TABLE 6 Comparison of prediction by web servers ExoPred, SecretomeP 2.0, andOutcyte with ExoProPred on a validation dataset.

Predictionmodel TP FP TN FN Sens Spec Acc

Exored 26 51 350 142 15.48% 87.28% 66.08%

SecretomeP 2.0 80 169 232 88 47.62% 57.85% 54.83%

Outcyte 47 100 301 121 27.97% 75.06% 61.16%

ExoProPred 133 83 318 34 79.64% 79.30% 79.40%

FN, false negative; FP, false positive; TN, true negative; TP, true positive.

We have created a platform that allows users to classify exoso-

mal and non-exosomal protein sequences. In addition to the prediction

of exosomal proteins, we have incorporated a motif-search program

in our web server to help users discover exosomal and non-exosomal

motifs in their query sequences to aid in the prediction as well as

identification of new exosomal proteins. In this web server, we have

implemented our best-performingmodel – the hybrid model.

5 CONCLUSION

Exosomal proteins have diverse applications in healthcare, particularly

in developing non-invasive disease biomarkers. These exosomal pro-

teins are valuable in liquid biopsy, allowing non-invasive sampling for

disease detection and monitoring. This study presents a highly accu-

rate method for predicting exosomal proteins, which performs better
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than the existingmethod. In addition toMLmodels called black box, we

used similarity and motif-based approaches. In case a query sequence

is highly similar to a known exosomal protein, we assign the query

sequence as an exosomal protein; confidence in prediction depends

upon the level of similarity. In addition,wediscoveredmotifs associated

with exosomal proteins to identify exosomal proteins.Oneof theobjec-

tives of this study is to facilitate researchers working in healthcare,

thus, we developed an online web server and offline standalone soft-

ware. We believe our study will benefit scientists worldwide studying

protein or peptide diagnostics and therapies. The web server is freely

available to encourage the use of this prediction method in research.

We hope the development of ExoProPred enables the exploration

of the potential of exosomal proteins and helps in the development

of non-invasive diagnostic and therapeutic techniques for a range of

ailments.
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