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Abstract

Non-invasive diagnostics and therapies are crucial to prevent patients from under-
going painful procedures. Exosomal proteins can serve as important biomarkers for
such advancements. In this study, we attempted to build a model to predict exoso-
mal proteins. All models are trained, tested, and evaluated on a non-redundant dataset
comprising 2831 exosomal and 2831 non-exosomal proteins, where no two proteins
have more than 40% similarity. Initially, the standard similarity-based method Basic
Local Alignment Search Tool (BLAST) was used to predict exosomal proteins, which
failed due to low-level similarity in the dataset. To overcome this challenge, machine
learning (ML) based models were developed using compositional and evolutionary
features of proteins achieving an area under the receiver operating characteristics
(AUROC) of 0.73. Our analysis also indicated that exosomal proteins have a variety
of sequence-based motifs which can be used to predict exosomal proteins. Hence, we
developed a hybrid method combining motif-based and ML-based approaches for pre-
dicting exosomal proteins, achieving a maximum AUROC of 0.85 and MCC of 0.56 on
an independent dataset. This hybrid model performs better than presently available
methods when assessed on an independent dataset. A web server and a standalone
software ExoProPred (https://webs.iiitd.edu.in/raghava/exopropred/) have been cre-
ated to help scientists predict and discover exosomal proteins and find functional

motifs present in them.
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1 | INTRODUCTION

Protein secretion is crucial for a wide range of functions, including

communication among cells [1]. The majority of secreted proteins

in eukaryotes go along the (ER)-Golgi pathway [2]. This pathway is

Abbreviations: AUC, area under the curve; AAIl, amino acid index; AAC, amino acid

composition; ATC, atom composition; BLAST, basic local alignment search tool; DT, decision
tree; GNB, Gaussian naive bayes; KNN, K-nearest neighbors; LR, logistic regression; ML,

guided via a signal peptide present on the N-terminus of the pro-

tein, also known as the leader sequence. It helps deliver the nascent

machine learning; MCC, Matthews correlation coefficient; MERCI, Motif emerging and with

classes-identification; PSSM, position-specific scoring matrix; PAAC, pseudo amino acid
composition; QSO, quasi sequence order; RFE, recursive feature selection; RF, random forest;

proteins from ER to the Golgi apparatus, which are then transported

to the cell surface via vesicles [3]. Apart from the classical path-

SEP, shannon entropy; SER, shannon entropy of residue level; SVC, support vector classifier;

XGB, extreme gradient boosting.

way, that is, the ER-Golgi pathway, some proteins are also secreted
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through unconventional pathways that are able to secrete the leader-
less proteins. Unconventional pathways involve both non-vesicular and
vesicular transport. In non-vesicular transport, proteins are secreted
into the extracellular space, whereas in vesicular transport, proteins
are secreted via vesicles. These vesicular structures comprise a variety
of classes, and among these classes, exosomes stand out [4, 5].

Exosomes belong to a class of extracellular vesicles with endoso-
mal origin are derived from cells, and range from size 30 to 150 nm
[6]. They facilitate interactions with the cellular environment and are
extensively found in bodily fluids like urine, saliva, blood, cerebrospinal
fluid, bile, breast milk, amniotic fluid, semen, epididymal fluid, and
sputum [7]. They are produced in the cytosol as a result of inward
budding on late endosomes to form intraluminal vesicles (ILVs) inside
a large multivesicular body (MVB) [8]. When MVB merges with the
plasma membrane, ILVs are secreted as exosomes into the extracellular
environment [9]. Exosomes encompass a compound cargo of contents
arising from the original cell, including lipids, DNA, proteins, miRNA,
and mRNA (Figure 1) [10]. The content carried by exosomes can change
indiseased conditions making it a useful entity for biomarker detection
[11]. Exosome-based diagnostics are more specific and sensitive than
liquid biopsy or conventional biopsy biomarkers due to their high sta-
bility in body fluids [12, 13]. In addition, exosomal markers are readily
available from most biofluids which makes exosome-based diagnos-
tics labor and cost-effective [14, 15]. Since proteins and peptides are
the most widely studied macromolecules as biomarkers, identifying
and annotating exosomal proteins can help develop the least-invasive
novel diagnostic methods as well as therapies for various diseases
[16-18]. The proteins extracted from the circulating exosomes can give
us comprehensive information about a specific disease - for exam-
ple - exosomal proteins can give us important evidence about distal
tumors, which is otherwise difficult to obtain due to complex diagnos-
tic methods like tissue biopsy [16]. Extracting proteins from exosomes
is more efficient than extracting them from blood, as blood has many
substances [19].

Identifying proteins secreted by cells via exosomes has its own chal-
lenges, as cells produce a wide range of highly similar proteins. In
addition, exosomes arise from a range of different cell types, and it
would be difficult to determine their origin tissue unless they carry
extremely specific cargo [20]. Thus, it is crucial to develop a compu-
tational method that can predict proteins secreted by exosomes. In
this direction, there are several existing methods to predict classical
and non-classical secreted proteins that include SRTpred, OutCyte,
SecretP, SPRED, and SecretomeP 2.0 [21-25]. None of them has been
specifically trained on proteins secreted by exosomes or have discov-
ered motifs found in exosomal proteins. There is only one method
ExoPred, that is trained on exosomal proteins for vertebrates [26].
To complement presently available methods, we made a system-
atic attempt to build a classifier that can annotate human exosomal
proteins accurately. We have used a wide range of model-building tech-
niques, different types of protein features, and a motif-based approach
(see Figure 2). In addition, we have provided users with a novel method
to predict exosomal motifs in the sequences. This can help researchers

in designing and discovering new exosomal proteins.
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Significance Statement

Problem: Identification of secretory proteins in body fluids is
one of the key challenges in the development of non-invasive
diagnostics. It has been shown in the past that a significant
number of proteins are secreted by cells via exosomes called
exosomal proteins.

What is already known: The pre-existing webservers are able
to predict whether a protein is secreted from unconventional
pathways. There is only one existing software that particu-
larly predicts exosomal proteins; however, it is not able to
predict the same accurately.

What this paper adds: We have attempted to create a web-
server that is able to predict exosomal proteins accurately. In
addition, it also gives the users functional motifs specific to
exosomal proteins which we believe will be useful in develop-
ing novel protein sequences for exosomal drug delivery and
getting an understanding of the mechanism of how proteins
are transported via exosomes.

2 | MATERIALS AND METHODS
2.1 | Compilation and processing of the dataset

The data used in this research work was retrieved from UniProt
release 2022_02 (Released on May 25, 2022) and from the ExoPred
dataset [26, 27]. We retrieved 2178 exosomal proteins from UniProt
using the following queries; (i) (g0:0070062) AND (reviewed:true) AND
(organism_id:9606), (ii) “extracellular exosome” AND (reviewed:true)
AND (organism_id:9606), and (iii) “exosome” AND (reviewed:true) AND
(organism_id:9606). In addition, we retrieved 2551 exosomal proteins
from the ExoPred dataset, which are reviewed proteins belonging to
humans. After compiling the data extracted from UniProt and Exo-
Pred, we had a total of 3915 exosomal proteins. Similarly, we extracted
18,207 non-exosomal proteins from UniProt using the following query,
NOT (g0:0070062) NOT Exosomes NOT “Extracellular exosome” NOT
Exosome AND (reviewed:true) AND (organism_id:9606). We also com-
bined these non-exosomal proteins with the non-exosomal proteins
from the ExoPred dataset. Finally, we got 20,330 unique non-exosomal
proteins after removing duplicates. We also removed proteins consist-
ing of non-standard amino acids “BJOUXZ” and sequences with lengths
<55 and >1500. Finally, we obtained 2831 non-redundant exosomal
proteins after discarding redundant sequences using CD-HIT software
where no two proteins have more than 40% similarity [28]. Similarly,
we obtained 10,680 non-exosomal proteins after removing redundant
sequences. The final dataset contains 2831 exosomal and 2831 non-
exosomal (randomly selected from 10,680 non-exosomal sequences)

proteins.
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FIGURE 2 Flowchart of the methodology followed in the study.
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2.2 | Feature generation

To develop a prediction model to classify proteins, we need a set of
features for every protein.

A number of feature encoding techniques have been used
in previous studies [29-32]. We used a standalone tool called
Pfeature to compute numerous features for the proteins, including
evolutionary information-based features and composition-based
features [33].

2.2.1 | Composition-based features

The composition-based feature module available on Pfeature provides
a vector of 9163 features for every protein in the positive (exoso-
mal) and negative (non-exosomal) dataset like amino acid composition
(AAC), tri-peptide composition (TPC), di-peptide composition (DPC),
and many more.

2.2.2 | Evolutionary features

The evolutionary features of a protein are known to provide addi-
tional important information about proteins than its other primary
sequence features [34, 35]. The evolutionary information can be
retrieved by calculating the position-specific scoring matrix (PSSM)
profile using Position-Specific Iterated Basic Local Alignment Search
Tool (PSI-BLAST) for each protein [36]. In PSSM, we obtain a matrix
containing the dimensions 20 x length of sequence for protein or
peptide sequences. As we are using multiple sequences together for
the prediction, we need a fixed-length vector to develop machine
learning (ML) models. Hence, we have used PSSM-400 composition
profiles as evolutionary features, which have been described in ear-
lier studies [35]. PSSM-400 is a fixed 20 x 20 dimension vector for

a protein sequence which comprises the measure of occurrences of
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20 amino acids in the sequence. We have created a PSSM matrix
for each sequence which was first normalized within the range
of 0-1 and converted into a PSSM composition of size 20 x 20
vector [33].

2.3 | Feature selection

It has been shown earlier that all the features extracted from a pro-
tein are not relevant, and there is a need to select only the useful ones
from a big set of features [37]. To achieve the same, we applied RFE fea-
ture selection technique using Logistic Regression (LR) as the estimator
[38]. We selected the top 20 and top 50 most relevant compositional
features and evolutionary features (PSSM composition), respectively.
This feature selection method keeps removing the weakest features
from the set until a specified number of features has been reached. The
features were selected from the standardized data that was obtained
using StandardScaler method [39]. The features that were top-ranked
were then used to create several machine-learning prediction models
for the dataset. The features used in the ML models are described in
Table S1.

2.4 | Similarity search using BLAST

BLAST version-2.2.29+ is widely used to identify and annotate protein
and nucleotide sequences [40]. In this research study, we tried to use
BLAST for the identification of exosomal proteins. It is based on the
protein sequence similarity with exosomal and non-exosomal protein
sequences. The protein query sequences were made to hit against a
database of exosomal and non-exosomal protein sequences.

We applied three approaches to identify exosomal sequences, which
involved taking into account the top hit, top three hits, and top five hits
at various E-value cut-offs. In the first strategy, that is, first hit, - the
sequence is identified as exosomal or non-exosomal based on its first
hit against the whole database. However, for the top three and five hits,
a voting approach is considered, and a sequence is identified as exoso-
mal if top three or five hits have the maximum of exosomal proteins.
The non-exosomal proteins are also characterized in the same manner.
For this, a minimum of three or five hits must be available for voting.
The performance of these three strategies was recorded for different
E-values. Several researchers have used this methodology to identify a

protein sequence [35, 41].

2.5 | Motif search

It is essential to recognize the functional motifs present in the pro-
tein or peptide sequences for their functional annotation as well as
to classify the negative and positive datasets. In this study, we used
Motif Emerging with Classes Identification (MERCI) program to find
motifs in both exosomal and non-exosomal protein sequences [42].

MERCI selects specific motifs in the positive dataset by comparing neg-
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ative and positive input sequences. Hence, to retrieve the particular
motifs in exosomal and non-exosomal protein sequences, we followed
a two-step procedure that involved - (a) Providing exosomal proteins
as positive input and non-exosomal proteins as negative input and find-
ing motifs for exosomal protein sequences, (b) Reversing the order for
positive and negative input to find motifs for non-exosomal protein
sequences.

We used different options available in MERCI to extract motifs that
are exclusive as well as inclusive to both sets. By default, MERCI takes
the maximal frequency of the negative sequences (fn) as zero, which
gives only exclusive motifs, that is, the motifs that are not common in
positive and negative sets. We increased this value to fn = 8 to obtain
inclusive motifs as well. Within the exclusive and inclusive motifs, we
got different kinds of motifs by specifying some values that include - (a)
No gap, (b) Gap = 1, (c) Gap = 2, and (d) Class = Koolman-Rohm. After
that, the unique proteins containing motifs were selected to compute

the overall coverage of motifs in the protein sequences.

2.6 | ML classifiers

We have employed several ML algorithms to differentiate between
exosomal and non-exosomal proteins. These algorithms involve Gaus-
sian Naive Bayes (GNB), K-Nearest Neighbors (KNN), Decision Tree
(DT), Extreme Gradient Boosting (XGB), Logistic RegreLR, Support Vec-
tor classifier (SVC), and random forest (RF). The parameters of these

algorithms were optimized using hyperparameter tuning.

2.7 | Performance metrics calculation and
cross-validation

The whole dataset was divided into the ratio of 80:20, where 80%
comprised the training and 20% validation data. The five-fold cross-
validation technique was applied to 80% of the training data to assess
the ML models, and the remaining 20% was kept unknown to the
models. In the five-fold cross-validation technique, 80% of training
data is split into five parts where four folds are used for training,
and the left one fold is used as a test set for internal validation pur-
poses. This procedure is reiterated five times so that every fold gets
a chance to be the test fold. The ML models used in this study have
been evaluated using performance metrics which include parameters
dependent and independent of the threshold. The different standard
evaluation metrics that have been used in this study include sensitiv-
ity, specificity, Matthews correlation coefficient (MCC), accuracy, and
area under the receiver operating characteristics (AUROC). Out of
these, AUROC is threshold-independent, and the rest of the parame-
ters are threshold-dependent. The threshold-dependent parameters,
like specificity, sensitivity, and MCC, were optimized to obtain a thresh-
old with the maximum values. These metrics have been previously used

in studies to estimate the performance of ML models [43-45].

TN

TNy Fp < 100 (1)

Specificity =
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e TP
Sensitivity = FPrTN x 100 (2)
Accuracy =& x 100 (3)

TN+ TP+ FN+FP

o TN
SpeC|f|C|ty = TN—-I-FP x 100 (4)
where TP, FP, TN, and FN are true positive, false positive, true negative,

and false negative, respectively.

2.8 | Hybrid model

To improve the prediction of ML models, we applied a hybrid approach
that integrates and employs the various results obtained in this study.
The hybrid approach uses a weighted scoring method in which the
scores are calculated by combining two methods (i) Motif-based
approach and (ii) ML-based methods. In this hybrid model, we assigned
ascore of +0.5 if a protein sequence had an exosomal motif and —0.5 if
it had a non-exosomal motif, and O if no motif was found. These scores
were combined with the ML prediction scores, which were obtained
using the predict_proba() function. It gave us the probability of a pro-
tein belonging to a particular class instead of a binary result. The motif
score and ML score together formed an overall score for every pro-
tein ranging from —0.5 to +1.5. The scoring method is described in
Equation (5). The sequences were categorized as exosomal and non-
exosomal by analyzing the overall scores. A number of studies have

used this hybrid approach earlier [41, 46].

S+ 0.5 If exosomal motif present
§'=45-0.5 If non-exosomal motif present (5)

S If no motif is found

Here, S = Prediction score obtained from ML-based approach,
S’ = Hybrid score ranging from —0.5 to 1.5 obtained by ML-based and
motif-based approaches.

3 | RESULTS
3.1 | Amino acid composition analysis

After analyzing and comparing the AAC of exosomal and non-exosomal
proteins, we have discovered that there is only a slight amount of
difference in the average AACs. However, we performed a two-sided
Mann-Whitney U test on the data to compare the AACs of both exoso-
mal and non-exosomal protein groups. The two-sided Mann-Whitney
Utestis used to compare the central tendencies of the two groups with-
out making any assumption on the distribution of the data. We found

that the difference between the averages in these groups was signif-

icant for about 15 amino acids, and the p-values for each amino acid
are given in Table S2 and shown in Figure 3. The maximum difference
between averages was observed in AACs of serine (0.93) followed by
leucine (0.76) and proline (0.64) with a p-value < 0.05.

3.2 | BLAST performance

BLAST is widely used to annotate and recognize the role of a query
protein sequence on the basis of similarity search. We attempted
to utilize BLAST in this study to classify proteins as exosomal and
non-exosomal. We used five-fold cross-validation to evaluate the per-
formance of BLAST. Firstly, the sequences in four folds are used to
create a database, and the sequences present in the fifth fold are used
to hit against the sequences present in the respective database. This
procedure was repeated five times. To evaluate BLAST performance on
the validation dataset, we constructed a database using all the training
sequences, and those in the validation set were searched against the
database. We used BLAST in three ways - (a) top hit, (b) top 3 hits, and
(c) top 5 hits. The top hit is a standard method that assigns a class to
the protein based on the first hit, whereas the top 3 and top 5 criteria
assign a class to the protein on the basis of the class that appears the
maximum number of times in the first 3 and 5 hits. We have considered
the top 3 and 5 hits as sometimes the top hit is not always the most
relevant one. However, even after trying all these criteria, we were get-
ting a large number of false positives and false negatives. We obtained
18.06%, 11.08%, and 8.39% sensitivity (number of correct hits) for the
training dataset, whereas the sensitivity of 17.92%, 11.39%, and 8.65%
was obtained for the validation dataset for top 1, top 3, and top 5 hits,
respectively. With the increment of the E-value, the error rate was
also increasing. For the training set, we got 9.45%, 4.75%, and 3.2%,
and for the validation set, we got 12.97%, 7.41%, and 6% for top 1,
top 3, and top 5 hits, respectively. The results for BLAST are shown in
Table 1.

3.3 | ML models

For each protein sequence in the dataset, a total of 9163 features
were computed that constituted more than ten types of compositional
features. Along with the composition-based features, evolutionary fea-
tures were also computed. We first developed ML models on features
like AAC and PSSM Composition which led to an AUROC of 0.70 on
RF model and 0.72 on LR model, respectively. The results for AAC and
PSSM composition are given in Table 2.

In order to improve the model’s performance, we performed feature
selection on the set of 9163 features using the feature selection tech-
nique - RFE. The best-performing ML model was RF model on 70 fea-
tures containing the top 20 compositional features and top 50 evolu-
tionary (PSSM) features. It obtained an AUROC of 0.73 for the indepen-
dent validation set. The detailed results for all ML models performed
for selected features is given in Table 3. The ML models were devel-

oped using the scikit-learn package in Python, and hyperparameter
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FIGURE 3 Amino acid composition analysis for exosomal and non-exosomal proteins.

tuning was done to augment the algorithms using grid search [39].
Grid search finds the combination of best hyperparameters for a given
model by exhaustively generating candidates from the grid of param-
eter values. The parameters used for each algorithm are described in
Table S3.

3.4 | Compositional features

The AAC for the exosomal and non-exosomal proteins was calculated
to build the ML models. The RF model was observed to perform well
than other models and was able to achieve an AUROC of 0.71 and 0.70
on training and validation sets, respectively. The performance of AAC
for the dataset is given in Table 2.

3.5 | Evolutionary features

The ML models were also developed on the basis of evolutionary
information. To obtain the evolutionary information, we computed the
PSSM profiles of each protein which were then fed to our ML mod-
els. It was observed that the LR model was performing best on these
features and achieved the AUROC of about 0.73 and 0.72 for training
and validation sets. The performance of PSSM-based models is given in
Table 2.

3.6 | Feature selection

A total of 9163 composition-based features were generated, which

were short-listed to the top 20 features using the RFE feature selec-

tion method based on the LR estimator. These 20 features attained
an AUROC of 0.71 on training and 0.71 on validation sets based
on the SVC. We also selected the top 50 features for evolutionary
information-based features using the same technique, which yielded
the AUROCs of 0.74 on training and 0.71 on validation sets using a RF
classifier. We also compiled the top 20 compositional and top 50 evolu-
tionary features, which resulted in a matrix of a total of 70 features. The
combination of these features was able to achieve the AUROCs of 0.75
on training and 0.73 on validation sets. The results for all the selected

features are shown in Table 3.

3.7 | Top selected features

The top compositional features include Amino Acid Index (AAI), Atom
Composition (ATC), Pseudo Amino Acid Composition (PAAC), Shannon
Entropy (SEP), Quasi-Sequence Order (QSO), and Shannon Entropy
of Residue Level (SER). Amongst these, it was observed that three of
the relevant features include SER, QSO, and PAAC of tryptophan (W),
which indicates that tryptophan can be an important amino acid for dif-
ferentiating between exosomal and non-exosomal proteins. Along with
this, it was observed that the ATC of Nitrogen and Sulphur were also
two of the critical features in predicting exosomal proteins.

3.8 | Maotif search

We attempted to identify the exclusive and inclusive set of motifs
present in exosomal and non-exosomal proteins using the publicly
available MERCI program. To achieve this, we extracted motifs using

different parameters like - (a) no gap, (b) gap = 1, (c) gap = 2, and
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TABLE 1 Results fortop 1, top 3, and top 5 hits in Basic Local Alignment Search Tool (BLAST) for validation set searched against the training

set database (here, sens = sensitivity and spec = specificity).

Top 1 Training Validation
Exosomal Non-exosomal Exosomal Non-exosomal
e-values Sens Error Spec Error Sens Error Spec Error
10°¢ 18.06 9.45 10.29 10.86 17.92 9.97 13.24 12.97
10 18.75 9.74 10.8 11.28 18.45 10.41 14.03 13.06
10* 19.17 10.11 11.3 11.57 19.24 10.68 14.56 13.77
10° 19.96 10.69 11.99 12.14 19.59 113 1545 13.86
102 20.71 11.35 12.83 12.89 20.12 11.83 16.42 14.74
10! 22.26 12.52 14.09 14.68 21.09 12.53 18.01 16.24
Top 3 Training Validation
Exosomal Non-exosomal Exosomal Non-exosomal
e-values Sens Error Spec error Sens Error Spec Error
10°¢ 11.08 475 6.12 6.65 11.39 4.5 6.35 7.41
10° 11.99 5.03 6.49 6.98 12 4.94 6.8 7.86
104 12.74 5.37 6.91 7.51 12.53 5.12 7.15 8.38
10° 13.58 5.85 7.37 7.84 13.24 5.65 7.86 8.74
10-2 14.55 6.51 8.06 8.54 13.95 6.18 8.91 9.36
10! 15.9 7.24 9.07 9.32 15.09 6.97 10.24 10.59
Top 5 Training Validation
Exosomal Non-exosomal Exosomal Non-exosomal
e-values Sens Error Spec Error Sens Error Spec Error
10°¢ 8.39 3.2 4.22 5.12 8.65 3.35 4.94 6
10 8.9 3.44 4.7 5.5 8.91 3.8 5.12 6.62
10 9.43 3.73 4.86 5.9 9.89 4.06 574 6.88
103 10.16 4.15 5.45 6.34 10.68 4.41 6.53 6.97
10? 10.97 4.46 6.01 6.76 11.39 4.85 6.88 7.68
101 12.1 5.06 7 7.33 12.53 5.74 7.68 8.38

(d) class = Koolman-Rohm. By default, MERCI takes fn (maximal fre-
guency in negative sequences) as zero, which gives exclusive motifs;
we increased it to fn = 8 to get inclusive motifs for both negative and
positive datasets. Altogether, MERCI provided 89 motifs in exosomal
and 130 motifs in a non-exosomal set that covered 1441 exosomal
and 1373 non-exosomal sequences. The top 5 motifs in each category
for the exclusive and inclusive sets and the number of sequences they
occurred in are given in Table 4. It is observed that most of the motifs
crucial for predicting exosomal proteins consisted of aliphatic amino

acids.

3.9 | Hybrid approach

Since we were getting a good sequence coverage using the motif
search, we decided to combine motif prediction with ML-based pre-
diction. In this hybrid model, we allotted a protein sequence a score of
+0.5 if an exosomal motif was present, —0.5 if a non-exosomal motif

was present, and O if none were present. These scores were compiled
with the scores obtained from ML-based predictions. After merging
the motif prediction scores with RF model prediction based on AAC,
we acquired an AUROC of 0.86 for training and 0.84 for the valida-
tion dataset. We also merged the motif prediction scores with RF model
prediction based on the top 70 features (20 compositional and 50 evo-
lutionary), which attained an AUROC of 0.87 for training and 0.85 for
the validation set. The performance of other models has been explained
in Table 5. The AUROC plots for training and validation sets for ML and

hybrid models are illustrated in Figure 4.

3.10 | Web server development

We developed a web server - ExoProPred (https://webs.iiitd.edu.in/
raghava/exopropred/) to predict exosomal proteins. We have inte-
grated our two best-performing hybrid models — (a) AAC combined
with MERCI and (b) Top 70 features combined with MERCI. The web
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TABLE 2 Results for ML models developed for AAC and PSSM composition features.

Amino acid composition (AAC)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 59.75 59.92 59.84 0.62 0.20 50.18 61.75 56.13 0.58 0.12
RF 64.58 66.15 65.36 0.71 0.31 64.91 65.01 64.96 0.70 0.30
LR 63.04 65.21 64.12 0.69 0.28 59.09 63.47 61.34 0.67 0.23
XGB 63.92 64.68 64.30 0.70 0.29 61.64 65.35 63.55 0.70 0.27
KNN 62.87 65.30 64.08 0.69 0.28 64.36 60.89 62.58 0.68 0.25
GNB 61.68 62.32 62.00 0.67 0.24 60.00 62.26 61.17 0.64 0.22
svC 64.93 64.99 64.96 0.70 0.30 62.36 61.92 62.14 0.68 0.24
PSSM composition

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 57.87 58.26 58.06 0.62 0.16 56.36 54.72 55.52 0.59 0.11
RF 68.30 66.76 67.54 0.73 0.35 66.73 65.87 66.28 0.71 0.33
LR 67.91 67.29 67.60 0.73 0.35 65.09 67.24 66.20 0.72 0.32
XGB 65.28 64.80 65.04 0.71 0.30 64.91 6141 63.11 0.70 0.26
KN 66.37 64.93 65.66 0.71 0.31 65.46 59.18 62.22 0.69 0.25
GNB 67.51 60.48 64.02 0.68 0.28 63.82 59.52 61.61 0.67 0.23
svC 67.82 66.89 67.36 0.73 0.35 65.82 65.87 65.84 0.71 0.32

AUC, areas under the curve; DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, K-Nearest Neighbors; LR, Logistic Regression; MCC, Matthews correlation
coefficient; ML, machine learning; PSSM, position-specific scoring matrix; RF, random forest; SVC, Support Vector classifier; XGB, Extreme Gradient Boosting.

server incorporates the key modules, including (a) prediction, (b) motif
scan, and (c) download. The “prediction module” allows users to sub-
mit their query protein sequences in FASTA format. This module can
predict exosomal and non-exosomal proteins effectively. The second
module, “motif scan,” can identify the motifs present in exosomal and
non-exosomal protein sequences using the MERCI software. This mod-
ule can also scan or map the motifs present in the protein sequence
query entered by the user and differentiates between them as exoso-
mal or non-exosomal sequences. The web server has been developed
on a responsive HTML template and is compatible with various oper-
ating systems. We also built a Python-based standalone package of
ExoProPred to help users easily predict and classify the sequences at
alarge scale which can be downloaded from the “download module” on
the web server.

3.11 | Comparison with other prediction tools

Presently, there is only one tool that predicts exosomal proteins -
ExoPred. Other tools, such as SecretomeP 2.0, and Outcyte, pre-
dict whether the protein is following an unconventional pathway [21,
22]. We entered our validation set of 569 sequences into each of
the servers after subtracting the sequences taken from the ExoPred
dataset and performing a comparative analysis. ExoPred was able to

predict the sequences with 66.08% accuracy [26]. However, it had very

low sensitivity but high specificity, which means it is able to predict the
non-exosomal sequences but not able to classify exosomal sequences
correctly. For SecretomeP 2.0, we selected the “mammalian” option on
the web server, and as indicated on their webpage, proteins with “NN
score” higher than 0.6 are said to be secreted via unconventional path-
ways. After setting this threshold, we found that it was able to predict
exosomal sequences with 54.83% accuracy [24]. In the Outcyte web
server, we selected Outcyte UPS (Unconventional protein secretion
option) and obtained an accuracy of 61.16% for our validation set, with
low sensitivity and comparatively higher specificity [21]. On entering
these sequences on our web server - ExoProPred, we obtained an
accuracy of 79.4%, which is higher than all the above-mentioned tools.
ExoProPred is also able to achieve a balanced sensitivity and specificity
along with the highest accuracy. The full comparison of prediction by
web servers is given in Table 6.

4 | DISCUSSION

There is a need to develop non-invasive diagnostic methods and thera-
pies to prevent patients from going through painful medical procedures
to get treatment. Exosomal biomarkers can be found in body fluids
(saliva, blood, urine, etc.) in abundance and can be used to detect a
disease or develop a treatment for different types of conditions [11].

These biomarkers are derived from the parent cells and are even more
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TABLE 3 Results for ML models developed for the top 20 composition features, top 50 evolutionary (PSSM) features, and combination of top

selected composition and evolutionary (PSSM) features.

20 selected composition-based features

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 59.75 59.16 59.46 0.62 0.19 60.55 55.06 57.72 0.61 0.16
RF 63.00 64.37 63.68 0.69 0.27 60.00 62.95 61.52 0.68 0.23
LR 64.67 65.61 65.14 0.71 0.30 64.18 63.47 63.81 0.70 0.28
XGB 64.23 64.37 64.30 0.69 0.29 63.27 64.15 63.73 0.70 0.27
KNN 62.03 63.21 62.62 0.67 0.25 61.27 61.75 61.52 0.67 0.23
GNB 58.44 58.63 58.53 0.63 0.17 54.73 57.80 56.31 0.62 0.13
svC 65.28 65.13 65.20 0.71 0.30 66.36 65.52 65.93 0.71 0.32
50 selected evolutionary-based features (PSSM Composition)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 58.40 59.55 58.97 0.62 0.18 58.91 57.46 58.16 0.62 0.16
RF 67.21 69.25 68.22 0.74 0.37 67.64 65.70 66.64 0.71 0.33
LR 67.69 66.67 67.18 0.73 0.34 65.09 63.47 64.25 0.69 0.29
XGB 65.67 65.82 65.75 0.72 0.32 66.73 61.92 64.25 0.69 0.29
KN 64.58 65.69 65.13 0.71 0.30 65.46 60.21 62.75 0.68 0.26
GNB 65.19 65.38 65.28 0.70 0.31 64.00 62.26 63.11 0.68 0.26
svC 66.94 67.33 67.14 0.73 0.34 64.36 63.29 63.81 0.69 0.28
70 selected features (20 compositional and 50 evolutionary (PSSM) )

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 59.49 60.13 59.81 0.63 0.20 56.00 64.15 60.19 0.61 0.20
RF 67.08 69.47 68.26 0.75 0.37 66.91 67.07 66.99 0.72 0.34
LR 68.83 67.82 68.33 0.75 0.37 68.55 64.67 66.55 0.73 0.33
XGB 66.64 66.22 66.43 0.73 0.33 64.91 64.84 64.87 0.72 0.30
KN 63.57 64.04 63.80 0.69 0.28 66.00 63.81 64.87 0.70 0.30
GNB 64.14 64.53 64.33 0.70 0.29 64.36 63.12 63.73 0.68 0.28
SvC 68.70 67.82 68.26 0.75 0.37 66.91 65.87 66.37 0.72 0.33

AUC, areas under the curve; DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, K-Nearest Neighbors; LR, Logistic Regression; MCC, Matthews correlation
coefficient; ML, machine learning; PSSM, position-specific scoring matrix; RF, random forest; SVC, Support Vector classifier; XGB, Extreme Gradient Boosting.

specific and sensitive than those extracted directly from the body flu-
ids because the exosome is highly stable and non-immunogenic [47].
Among the disease biomarkers, proteins have been broadly studied and
can be used for the diagnosis, prognosis, and treatment of specific dis-
eases [16-18]. However, it is difficult to identify these proteins as they
are extremely similar to those produced by the cells, and there is a mix-
ture of exosomes in the biofluids derived from different types of cells
[20]. To overcome this limitation, we made an effort to develop a predic-
tion server ExoProPred, that classifies the proteins into exosomal and
non-exosomal.

In this study, we created a dataset for 2831 exosomal and 2831 non-
exosomal proteins extracted from UniProt and ExoPred servers [26,

27]. A number of features were generated for the protein sequences

(~9163 features). Firstly, we used features like AAC (20 features)
and PSSM composition (400 features) to develop ML models, which
resulted in an AUROC of 0.70 on RF model and 0.72 on LR model,
respectively. The possible reasons why algorithms like LR outper-
formed powerful ML algorithms such as SVC and RF in PSSM could be
— (a) LR assumes a linear relationship between the predictor variables
and outcome variable. PSSM scores are a natural fit for this assump-
tion as they represent a linearly scaled measure of the evolutionary
conservation at each residue position, (b) In PSSM-based classifica-
tion tasks, some residues may have weak or noisy signals, and even
though algorithms like SVM are more robust to noise than LR, they
might fail if the noise is too high and there are many outliers in the
data.
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TABLE 4 Top 5 motifs exclusive and inclusive motifs and the number of sequences in which they occurred (a) no gap, (b) gap =1, (c) gap = 2,
and (d) class = Koolman-Rohm (fn = maximal frequency in negative sequences, pos = occurrence in positive sequences, neg = occurrence in

negative sequences).

Exclusive motifs (fn = 0)

Inclusive motifs (fn = 8)

Motifs Pos Neg
No gap

IATG 14 0
NRAL 13 0
RIHTG 12 0
EKYL 12 0
IKAK 12 0
Gap=1

ERDgapER 16 0
GGLgapVL 16 0
QgapLSRL 16 0
ALAEgapG 15 0
AlgapEEL 14 0
Gap=2

lgaplgapSGG 22 0
EEVgapGgapK 19 0
DEgapGgapQV 18 0
ELEEgapLgapQ 18 0
GDAgapDgapL 18 0
Class = Koolman-Rohm

Neutral GKTS 20 0
E A E aliphatic aliphatic neutral aliphatic 20 0
Aliphatic N aliphatic basic K aliphatic aliphatic 19 0
G acidic acidic K acidic 18 0
F aliphatic K acidic F 18 0

Secondly, we tried to increase the performance of ML models
by selecting only the relevant features that were mined from a big
set of features using Recursive Feature Elimination (RFE). The best-
performing model was RF model that was trained on 70 features (20
compositional and 40 PSSM features). It obtained an AUROC of 0.73
on an independent validation set. The top 20 compositional features
included AAI, ATC, PAAC, SEP, QSO, and SER. Additionally, it was also
observed that amino acids like serine, leucine, and proline showed
the maximum difference in average AACs between exosomal and
non-exosomal proteins.

Besides the development of ML models on selected essential fea-
tures, we also applied the BLAST tool to identify the exosomal proteins,
as this tool has been widely used to annotate the query proteins [40].
However, we were not able to obtain very high performance with
BLAST. An explanation for this could be that exosomal proteins are very
similar to the proteins present in their parent cell; hence, it must be dif-
ficult to point out which protein belongs to the exosome. We decided
to exclude BLAST-based performance from our hybrid model, and to

boost the performance of the hybrid model; we added a motif-based

Motifs Pos Neg
HSASA 32 7
PVLRRN 32 7
RLKCH 31 7
SPPKC 31 8
RLKTH 30 8
AlEgapT 41 8
PFgapRL 41 8
lgapRV R 39 8
DRgapAl 37 7
DgapRAI 37 8
FgapDRgapF 40 8
FDgapRgapF 39 8
RDgapDgapY 37 7
EKAgaplLgapA 36 7
Alacidic T 43 6
D aliphatic D acidic aliphatic aliphatic 42 8
L E basic aliphatic aliphatic E 41 8
Acidic aliphatic K neutral Y 41 8
Acidic acidic aliphatic K aliphatic aliphatic aliphatic 40 8

approach using MERCI in which we obtained 89 exosomal and 130
non-exosomal motifs covering 1441 exosomal and 1373 non-exosomal
sequences [42]. In this study, we have identified novel exosomal and
non-exosomal motifs using various methods like (1) no gap, (2) gap =1,
(3) gap = 2, and (4) class = Koolman-Rohm which are found exclusively
as well as inclusively in both classes (exosomal and non-exosomal). On
analyzing the top motifs obtained for the classification of exosomal
and non-exosomal sequences, we observed that most motifs contained
aliphatic amino acids.

The motif-based approach was able to cover a high amount of
exosomal sequences. Hence, we combined this approach with the
top-selected features to develop a hybrid model to predict exosomal
protein sequences. We are able to achieve an accuracy of 78% and an
AUROC of 0.85 with balanced specificity and sensitivity on an inde-
pendent validation set. In addition to this, we obtained the highest
accuracy for a validation set of 569 sequences when compared to
other prediction web servers like Outcyte, ExoPred, and SecretomeP
2.0. The accuracy obtained by Outcyte, ExoPred, SecretomeP 2.0, and
ExoProPred are 61.16%, 66.08%, 54.83, and 79.40%, respectively.
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TABLE 5 Results of hybrid approach (a) MERCI + ML (AAC), (b) MERCI + ML (top 20 compositional features), (c) MERCI + ML (top 50 PSSM
features), (d) MERCI + ML (top 70 features - compositional and evolutionary).

AAC

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 72.42 7371 73.06 0.8 0.46 66.73 74.44 70.7 0.78 0.41
RF 76.85 77.31 77.08 0.86 0.54 77.27 75.64 76.43 0.84 0.53
LR 76.46 75.89 76.18 0.85 0.52 7491 74.44 74.67 0.84 0.49
XGB 76.11 76.69 764 0.85 0.53 76.55 75.99 76.26 0.84 0.53
KNN 76.33 75.93 76.13 0.85 0.52 78.18 72.9 75.46 0.84 0.51
GNB 73.91 73.67 73.79 0.82 0.48 73.27 70.84 72.02 0.79 0.44
SsvC 76.24 77.58 76.9 0.85 0.54 74.91 74.44 74.67 0.84 0.49

20 selected features (compositional)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 71.85 73.62 72.73 0.81 0.45 72.55 71.01 7176 0.80 0.44

RF 75.67 74.96 75.31 0.85 0.51 75.64 74.27 74.93 0.83 0.50

LR 76.85 76.82 76.84 0.86 0.54 76.00 74.96 75.46 0.85 0.51

XGB 75.76 75.67 75.71 0.84 0.51 75.27 74.96 75.11 0.84 0.50

KNN 74.05 75.53 74.78 0.84 0.50 74.00 74.44 74.23 0.83 0.48

GNB 70.89 70.73 70.81 0.79 0.42 70.18 68.95 69.55 0.78 0.39

SvC 77.33 76.29 76.82 0.85 0.54 76.91 76.16 76.52 0.84 0.53

50 selected evolutionary features (PSSM)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 73.13 71.83 72.48 0.80 0.45 72.00 7170 7184 0.80 0.44

RF 77.29 79.93 78.60 0.87 0.57 77.64 77.19 77.41 0.85 0.55

LR 77.55 78.91 78.22 0.86 0.56 76.00 75.47 75.73 0.84 0.51

XGB 75.93 77.57 76.74 0.86 0.54 78.00 75.81 76.88 0.84 0.54

KNN 75.41 77.88 76.63 0.86 0.53 76.55 73.07 74.76 0.84 0.50

GNB 77.90 73.56 75.75 0.83 0.52 77.82 71.36 74.49 0.81 0.49

SvC 78.21 78.50 78.36 0.86 0.57 76.18 74.27 75.20 0.84 0.50

70 selected features (20 compositional and 50 evolutionary)

Training Validation

Model Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 72.56 73.12 72.84 0.80 0.46 71.09 7341 72.29 0.79 0.45

RF 78.17 78.86 7851 0.87 0.57 79.82 76.16 77.93 0.85 0.56

LR 78.83 77.84 78.33 0.87 0.57 78.18 75.64 76.88 0.85 0.54

XGB 77.51 77.13 77.32 0.86 0.55 75.82 75.30 75.55 0.85 0.51

KNN 74.27 76.68 75.46 0.85 0.51 77.27 75.47 76.35 0.84 0.53

GNB 74.40 74.23 74.32 0.82 0.49 74.36 71.18 72.73 0.81 0.46

SvC 77.99 79.22 78.60 0.87 0.57 76.91 77.99 77.05 0.85 0.54

AAC, amino acid composition; AUC, areas under the curve; DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, K-Nearest Neighbors; LR, Logistic Regres-
sion; MCC, Matthews correlation coefficient; MERCI, Motif Emerging with Classes Identification; ML, machine learning; PSSM, position-specific scoring
matrix; RF, random forest; SVC, Support Vector classifier; XGB, Extreme Gradient Boosting.
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FIGURE 4 Areaunder the receiver operating characteristics (AUROC) plots for (A) training set in ML model, (B) validation set in ML model, (C)

training set in the hybrid model, and (D) validation set in the hybrid model.

TABLE 6 Comparison of prediction by web servers ExoPred, SecretomeP 2.0, and Outcyte with ExoProPred on a validation dataset.

Prediction model TP FP TN

Exored 26 51 350
SecretomeP 2.0 80 169 232
Outcyte 47 100 301
ExoProPred 133 83 318

FN, false negative; FP, false positive; TN, true negative; TP, true positive.

We have created a platform that allows users to classify exoso-
mal and non-exosomal protein sequences. In addition to the prediction
of exosomal proteins, we have incorporated a motif-search program
in our web server to help users discover exosomal and non-exosomal
motifs in their query sequences to aid in the prediction as well as
identification of new exosomal proteins. In this web server, we have

implemented our best-performing model - the hybrid model.

FN Sens Spec Acc

142 15.48% 87.28% 66.08%

88 47.62% 57.85% 54.83%

121 27.97% 75.06% 61.16%

34 79.64% 79.30% 79.40%
5 | CONCLUSION

Exosomal proteins have diverse applications in healthcare, particularly
in developing non-invasive disease biomarkers. These exosomal pro-
teins are valuable in liquid biopsy, allowing non-invasive sampling for
disease detection and monitoring. This study presents a highly accu-

rate method for predicting exosomal proteins, which performs better
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than the existing method. In addition to ML models called black box, we
used similarity and motif-based approaches. In case a query sequence
is highly similar to a known exosomal protein, we assign the query
sequence as an exosomal protein; confidence in prediction depends
upon the level of similarity. In addition, we discovered motifs associated
with exosomal proteins to identify exosomal proteins. One of the objec-
tives of this study is to facilitate researchers working in healthcare,
thus, we developed an online web server and offline standalone soft-
ware. We believe our study will benefit scientists worldwide studying
protein or peptide diagnostics and therapies. The web server is freely
available to encourage the use of this prediction method in research.
We hope the development of ExoProPred enables the exploration
of the potential of exosomal proteins and helps in the development
of non-invasive diagnostic and therapeutic techniques for a range of

ailments.
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