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Prediction of Specificity and Cross-Reactivity of Kinase Inhibitors
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Abstract: Designing kinase inhibitors is always an area of interest because kinases are involved in many diseases. In the
last one decade a large number of kinase inhibitors have been launched successfully; six inhibitors have been approved by
FDA and more are under clinical trials. Cross-reactivity or off-target is one of the major problems in designing inhibitors
against protein kinases; as human, have more than 500 kinases with high sequence similarity. In this study an attempt has
been made to develop a model for predicting specificity and cross-reactivity of kinase inhibitors. The dataset used for test-
ing and training consists of binding affinities of 20 chemical kinase inhibitors with protein kinases.

We developed QSAR based SVM models for predicting binding affinity of an inhibitor against protein kinases using most
relevant 5,10 and 15 structure descriptors and achieving average correlation of 0.64, 0.488 and 0.442 respectively. In or-
der to predict specificity and cross-reactivity of an inhibitor, we developed 16 QSAR based SVM models for 16 protein
kinases; one model for each kinase. We achieved average correlation 0.719 between actual and predicted binding affinity
using kinase specific models. Based on the above study a web server DMKPred has been developed for predicting binding
affinity of a drug molecule with 16 kinases. The SVM based model used in this study can be used to predict kinase spe-

cific inhibitors. This study will be useful for designing kinase specific inhibitors.
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INTRODUCTION

Protein kinases are critical components of cellular signal
transduction, directly involved in many diseases including
cancer and inflammation. Thus kinases are one of most im-
portant drug targets [1-5]. This is the reason that most of the
pharmaceutical companies are concentrating on designing of
kinases inhibitors [6]. Fortunately researchers achieved suc-
cess in developing six drug molecules approved by FDA
(Gleevec, Iressa, Tarceva, Erbitux, Herceptin, Nexavar)
against kinases and 40 are under clinical trial [7]. One of the
major challenges in designing kinases inhibitors is cross-
reactivity or specificity [8]. There is need to develop a
method for estimating cross-reactivity in order to discover
inhibitors against specific kinase. It is not practically possi-
ble to examine cross-reactivity of an inhibitor using experi-
mental technique. Thus there is a need to develop in-silico
high throughput techniques for screening chemical libraries
against kinases.

Researchers are trying to understand the specificity and
mechanism of action of kinase inhibitors [9]. Recently Fabin
et al. [10] studies the cross reactivity of kinase inhibitors at a
large scale where they calculate Ky of 20 kinase inhibitors
against 119 protein kinases using a high throughput phase
display method. They have several observations that include-
i) most of the protein kinase inhibitor targets of the ATP
binding site, and because more than 500 protein kinases are
identified in human genome have an ATP site with very high
similarity [11], there is great potential of cross-reactivity, ii)
Specificity varies widely and is not strongly correlated with
the chemical structure or identity of the intended target and
off-targets, iii) compounds which may bind with one sub-

*Address correspondence to this author at the Institute of Microbial Tech-
nology, Sector 39A, Chandigarh, India; Tel: +91-172-2690557, 2695225;
Fax: +91-172-2690632, 2690585; E-mail: raghava@imtech.res.in

1570-1808/11 $58.00+.00

family of protein kinase also bind to other sub-family of pro-
tein kinase with good affinity and iv) some allosteric site
binding inhibitors also bind with other kinases with good Kj.

In this study a systematic attempt has been made to un-
derstand cross-reactivity and specificity of kinase inhibitors.
First, we developed common models for predicting inhibi-
tion capability of an inhibitor against any protein kinase.
Then we developed kinase specific models for predicting
inhibition potential of a molecule against a desired kinase.
These models will be useful for predicting specificity and
cross-reactivity of kinase inhibitors.

METHODS
Dataset of Inhibitors

We extracted 20 kinase inhibitors and their experimen-
tally validated dissociation constant with 119 kinases [10]. It
has been observed that for a number of protein kinases dis-
sociation constant was 10 (no significant binding affinity).
We create a clean data set where we take only those kinases
which satisfy the following two criterias; i) Kinases for
which six or more than six chemicals have significant inhibi-
tion (K4 < 10) and ii) Kinases for which SVM models were
developed in reasonable time.

Molecular Descriptors

In order to understand the property of a chemical mole-
cule, it is important to calculate its molecular descriptors. In
chemoinformatics the structural feature of the individual
molecules are derived from the molecular structure, so called
descriptors [12]. Molecular descriptors include constitu-
tional, topological, geometrical, physiochemical, electro-
static descriptors.
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In this study our aim was to develop models for academic
use. Thus, we calculated molecular descriptors using two
freely available software packages Molinspiration and
PreADMET.

Molinspiration

Molinspiration [13] is a freely available online software
for calculating molecular descriptors. This software calcu-
lates total nine molecular descriptors which are commonly
used in QSAR studies. We use eight molecular descriptors
for all kinases in our generalized models; these descriptors
are milogP (octanol / water partition coefficient), TPSA
(topological polar surface area), nAtoms (number of atoms),
MW (molecular weight), nON (Number of Hydrogen bond
acceptor), NnOHNH (Number of Hydrogen bond donar), nro-
tab (number of rotable bonds) and volume.

PreADMET

This program allows to calculate more than 900 molecu-
lar descriptors for a molecule [14]. It is not practically possi-
ble to use all these descriptors for developing any model
because these descriptors include a number of redundant
descriptors; dimensionality of feature space is also very high.
In order to reduce the descriptors dimensionality and select-
ing the most relevant descriptors, we used the following cri-
terias. We removed all those descriptors, which had no value
for any kinase. We also removed all those descriptors which
had value zero for more than 10. We Selected only those
molecular descriptors, that were having Pearson’s correlation
less than 0.8. In this way we finally got 60 molecular de-
scriptors. In addition to 60 descriptors, two molecular de-
scriptors were also calculated using Molinspiration, they
were also used for developing models.

The molecular descriptors were further reduced from 62
to 15 descriptors based on correlation between Ky & descrip-
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tors. We used top 5,10 and 15 descriptors for developing
models (Table 1). For developing general QSAR model we
used only the descriptors having highest average correlation.
In order to develop, kinase specific model we used the de-
scriptors having highest correlation with Ky of a particular
kinase.

SVM Algorithm

An excellent machine learning techniqgue SVM has been
used for the prediction of Ky. The theory of SVM has been
extensively described in literature [15]. In the present study,
a freely downloadable package of SVM, SVM_light has
been used to predict the Ky of kinase inhibitors with specific
protein kinases. The SVM_light software is downloaded
from http://www.cs.cornell.edu/People/tj/svm_light/. This
software enables users to define a number of parameters as
well as to select from some inbuilt kernel functions, includ-
ing a Radial Basis Function (RBF), polynomial and linear
kernel. We used different parameters and different kernels
for our study.

Construction of SVM Models

In this study regression models have been developed,
where descriptors are used as dependent or input variables
and inhibition constant as output or independent variable.
We use different kernels and optimizing parameters to gen-
erate SVM model. These models are called QSAR based
SVM models, because they compute inhibition constant from
descriptors of kinase inhibitors.

Evaluation of Models

In the present study we used Jack-Knife test/leave one
out cross-validation (LOOCV) technique for evaluating our
models. In LOOCV one chemical kinase inhibitor has been

Table 1. List of Top 15 Molecular Descriptors of PreADMET, these Descriptors are Ranked Based on Correlation Between
Descriptor and Inhibition Constant (K)

Descriptor Correlation Descriptor category
Negative charge SA 0.24 Electrostatic descriptor
2D VSA H bond acceptor 0.18 Geometrical descriptor
SK log Pyp 0.15 Physiochemical descriptor
SK log P value 0.14 Physiochemical descriptor
2D VSA H bond all 0.13 Geometrical descriptor
Maximum positive charge 0.13 Electrostatic descriptor
Charge polarization 0.12 Electrostatic descriptor
Fraction of 2D VSA polar 0.12 Geometrical descriptor
Relative positive charge 0.11 Electrostatic descriptor
Molecular weight 0.10 Constitutional descriptor
SK BP 0.10 Physiochemical descriptor
Polarity parameter 0.09 Electrostatic descriptor
SK log D value 0.09 Physiochemical descriptor
Aromatic bond 0.09 Constitutional descriptor
SK log S value 0.07 Physiochemical descriptor
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used for testing and remaining chemicals for testing, this
process repeats n times in such a way that each chemical
kinase inhibitor is used for testing, where n is the total num-
ber of chemicals. In order to assess performance we compute
Pearsons’s correlation coefficient R, between predicted and
actual Ky value using the following formula.

“2 Kdacl dercd _ Z Kdacl z dercd
D) - (SKS) (k) (D)

pred

R =

Where n is the size of test set, Kq"" is the predicted dis-
sociation constant and Kg ' is the actual dissociation con-
stant. Value of R always ranges from -1 to +1 negative.

RESULTS
General Models

QSAR based SVM models have been developed for pre-
dicting kinase inhibitors as potential drug molecules. These
models were developed for whole of kinase family rather
than a specific member of kinase family. The objective of
this model is to examine the inhibition potential of a chemi-
cal molecule to inhibit the proteins of a kinase family. We
achieved correlation (R) 0.647, 0.488 and 0.442 respectively
for 5, 10 and 15 for best molecular descriptor models. We
achieved R more than 0.5 for four protein kinases using
Molinspiration model. In case of 15 descriptors model we
achieved correlation more than 0.5 for four kinases out of
these one has more than 0.65 correlation. In case of 10 de-
scriptor models 9 kinases have correlation more than 0.5
including two, that have more than 0.65 and no model gener-
ated in case of AAKL. In case of 5 descriptors based models
13 kinases have more correlation than 0.5 including eight
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which have more than 0.65. We used 8 Molinspiration de-
scriptors for developing model and achieved correlation
0.398 (Table 2).

Kinase Specific Models

Our above models predict whether a chemical will inhibit
protein kinases or not but they did not provide any informa-
tion about specificity and cross-reactivity because we used a
same set of molecular descriptors for all kinases which have
better correlation with dissociation constant. Here an attemp
has been made to develop kinase specific models where the
separate models have been developed for each member of
kinase family. These models will be helpful in predicting
specificity and cross-reactivity of kinase inhibitors. Our
above result shows that both ten and five descriptor models
performed very well for many kinases and both have some
advantage on each other. So in this study we used both mod-
els and computed their performance, we also computed to a
performance of models that were developed, using top nega-
tively correlated descriptors. We achieved overall correlation
0.719 using five descriptor models with 16 protein kinases
which have correlation more than 0.5 including 9 protein
kinases which have correlation more than 0.65. We also used
top ten descriptor models to check their performance and
achieved an overall correlation 0.518 and only six protein
kinases had correlation more than 0.5 and only six had more
than 0.65 but no model generated in case of six protein
kinases.

We also wanted to check the role of negatively correlated
descriptors on dissociation constant and achieved an overall
correlation 0.491 but no model developed for five kinase
proteins and six had correlation more than 0.5 including

Table2. Performance of SVM Based QSAR Models Using Top 5, 10 and 15 Descriptors
Protein Top5 Top 10 Top 15 Molinspiration
AAK1 0.514 NM 0.45 0.42
ABL1 0.449 0.714 0.43 0.472
ABL1E255K 0.851 0.623 0.473 0.48
ABL1H296P 0.851 0.623 0.473 0.48
ABL2 0.737 0.621 0.473 0.44
EPHAS 0.428 0.445 0.349 0.464
EPHB1 0.462 0.195 0.578 0.577
INK2 0.669 0.601 0.627 0.064
LCK 0.653 0.771 0.727 0.621
MAP4K5 0.658 0.515 0.41 0.129
PDGFR 0.583 0.268 0.363 0.036
RIPK2 0.736 0.249 0.25 0.557
SLK 0.643 0.363 0.293 0.345
SRC 0.77 0.541 0.54 0.395
STK10 0.792 0.511 0.396 0.373
TNIK 0.563 0.274 0.235 0.514
Average 0.647 0.488 0.442 0.398
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Table 3. Performance of Kinase Specific Models Developed Using Top Positive and Negative Correlated Descriptors
Protein Top 5 +ve Top 5 -ve Top 10 +ve Top 10 mixed
AAK1 0.55 0.8 NM 0.22
ABL1 0.52 0.38 0.16 NM

ABL1E255K 0.530 0.480 0.435 0.585
ABL1M351T 0.72 0.56 0.66 0.48
BIKE 0.96 NM 0.76 NM
EGFR 0.81 0.29 0.91 0.91
EPHA5 0.91 0.95 -0.02 0.95
EPHA6 0.79 NM 0.68 0.22
EPHB1 0.89 NM 0.38 NM
INK3 0.69 0.52 0.63 0.52
KIT 0.57 NM NM 0.29
LCK 0.62 0.56 NM 0.51
P38Alpha 0.57 NM NM NM
RIPK2 0.63 0.65 0.8 0.57
SLK 0.59 0.3 0.22 NM
TNIK 0.88 0.07 NM 0.76
Average 0.719 0.491 0.518 0.543

three that had more than 0.65. Similarly in case of the model
developed by using top five positively and top five nega-
tively correlated descriptors we achieved overall correlation
0.543 and 6 kinase had no model (Table 3).

DISCUSSION

First genomes sequenced in 1996, at present full genomes
of human and several pathogenic organisms have been se-
quenced. Attempts have been made to combine genomics,
proteomics, bioinformatics, combinatorial chemistry, QSAR
to screen new drug compounds in less time and money
which may developed as an effective drug [16, 17]. In the
last decades a large number of bioinformatic tools have been
developed for the annotation of protein and its function pre-
diction in order to identify the novel potential drug targets.
According to literature main drug targets belong to GPCRs,
Kinase protein, ion-channels, nuclear receptors, hormones
and DNA [18].

Kinase proteins are one of the important proteins in drug
designing so designing kinase inhibitors is always an area of
interest for pharmaceutical companies [19]. Despite tremen-
dous growth in the area of kinase inhibitors research from all
over the world, cross-reactivity and specificity still remains a
major challenge. Because most of the kinase inhibitor mole-
cules bind to the active site of kinase molecules and this site
is highly conserved in kinase family. There is a need to ad-
dress the issue of cross-reactivity in order to develop the
drug free from side effects.

The general artificial intelligence (Al) based techniques
such as SVM and neural network are elegant approaches for
the extraction of complex pattern from chemical structure
descriptors. These techniques are highly successful in protein

annotation [20, 21], subcellular localization [22, 23], struc-
ture prediction [24, 25], interacting residue prediction [26-
29], antibacterial peptide [30], QSAR studies [31, 32], mi-
croarray data analysis [33,34], cancer classification [35],
drug designing [36,37] and chemical toxicity studies [38].
Several studies shows that SVM over perform on other Al
techniques in drug designing [39]. We used SVM for QSAR
model development for Ky prediction and achieved overall
correlation 0.719. Our SVM based QSAR model worked
very well for 9 protein kinases. Result also suggests that the
performance of model decreases when negatively correlated
descriptors are included or feature dimension increases.
SVM parameters for all these models are available in tables
which are freely available at DMKPred web server.

CONCLUSIONS

In the present study, for the first time an attempt has been
made to predict specificity and cross-reactivity of kinase
inhibitors using in-silico approach. We used the experimen-
tal data of Fabin et al. for developing our models. First we
developed a general method for predicting kinase inhibitors
against kinase family; these models became helpful for
screening of kinase inhibitors. As shown in Table 2 we
achieved reasonable correlation for kinase inhibitor predic-
tion. Later on we use kinase specific model which may be
helpful in prediction of cross-reactivity and specificity of
kinase inhibitors. These models also gave reasonable correla-
tion (Table 3) between actual and predicted K, value.

In conclusion, our QSAR based SVM models directly
predict the dissociation constant of chemical kinase inhibi-
tors against protein kinases. This approach should provide a
valuable result in determining dissociation constant of
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chemical molecules against kinase proteins without taking
time and using an experimental setup.

DESCRIPTION OF WEB SERVER

Based on our study, we have developed a web server,
DMKPred, which allow the users to predict the dissociation
constant of chemical molecules with 16 protein Kkinases.
DMKPred is freely available at http://www.imtech.res.in/
raghava/dmkpred/. The Common Gateway Interface (CGI)
script for DMKPred is written using PERL. This server is
installed on a Sun Server under a Solaris environment and
launched using Apache. Required molecular descriptors
name for each protein kinases are given in the submission
page (Fig. 1). User can enter the molecular descriptors of the
chemical molecules for the prediction of dissociation con-
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stant with each protein kinase. Results after prediction, will
be displayed on result in a tabular form (Fig. 2).
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