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Abstract

Cancer is one of the most prevailing, deadly and challenging diseases worldwide. The advancement in technology led to the
generation of different types of omics data at each genome level that may potentially improve the current status of cancer
patients. These data have tremendous applications in managing cancer effectively with improved outcome in patients. This
review summarizes the various computational resources and tools housing several types of omics data related to cancer.
Major categorization of resources includes—cancer-associated multiomics data repositories, visualization/analysis tools for
omics data, machine learning-based diagnostic, prognostic, and predictive biomarker tools, and data analysis algorithms
employing the multiomics data. The review primarily focuses on providing comprehensive information on the open-source
multiomics tools and data repositories, owing to their broader applicability, economic-benefit and usability. Sections
including the comparative analysis, tools applicability and possible future directions have also been discussed in detail. We

hope that this information will significantly benefit the researchers and clinicians, especially those with no sound
background in bioinformatics and who lack sufficient data analysis skills to interpret something from the plethora of

cancer-specific data generated nowadays.
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Introduction

Genomic instability is often associated with the development of
human diseases. These genomic instability events can occur at
each step of genomic organization. Thus, understanding human
health and disease require the proper investigation of molecular
intricacy at genome organization levels such as the genome,
proteome, epigenome, transcriptome, post-transcriptome and
metabolome. With the development and advancements of next-
generation sequencing (NGS) technologies, oncology research
becomes data-driven. The data analysis at each genome
organization level reveals that cancer is a heterogeneous
and complex disease [1]. The analysis of generated data has

completely revolutionized the cancer genomics field. Thus, in
today’s era, cancer genome analysis and clinical information
have become a frontier in the management of cancer patients
[2]. Therefore, integrating data generated at each genome level
is essential to understand the complex nature of cancer and
get a holistic overview of genomic instability events, which
otherwise is not possible by single omics data analysis. In the
recent decade, several clinical and preclinical studies showed the
importance of data integration to get a clear and concise picture
of the disease under investigation [3, 4]. In one study, researchers
showed the importance of integrating proteomic data along with
genomic and clinical data for the prioritization of driver genes in
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Table 1. Different types of omics techniques used in quantifying the genomic architecture of the human genome and their functionalities

Type of omics Technique Description
Genomics WGS, WES Used for variant identification at genome or exome level
Epigenomics ChiP-Seq Identification for DNA binding site, transcription factor
DNase-Seq Identification of regulatory elements
ChiRP-Seq Identification of ncRNA, IncRNA and their associated proteins
WG-bisulphite Identification of methylation sites in human genome
Transcriptomics RNA-Seq Identification of transcripts such as mRNA, miRNA
Proteomics LC-MS/MS based Quantify protein abundance within biological condition
RRPA/SILAC based Quantify protein abundance within biological condition
Metabolomics LC-MS based Identify and quantify metabolites involves in specific pathways

colorectal cancer [5]. The most convenient and widely used
omics technologies to study genomic architecture are based
on NGS and mass spectroscopy [6]. In a more precise way,
NGS-based technology can be further categorized into several
subtypes. The whole-genome sequencing is an NGS-based
technology, particularly used for the identification of sequence
variants in exome sequences [7]. The Chip-Seq, DNAse-Seq,
FAIRE-Seq, are other NGS-based techniques used for the
quantification of DNA-protein interaction and the identification
of regulatory elements with the human genome [8]. Other NGS-
based techniques are ChiRP-Seq and WG bisulfite sequencing,
commonly employed to identify noncoding RNA and the
methylation sites within the human genome, unraveling the
epigenomic portion of genomic architecture [9]. Another variant
of the NGS technique is the RNA-Seq, which is employed to
quantify different kinds of miRNA and gene expression [8].
Thus we can conclude that NGS-based technologies are used
to identify genomic alteration and variants at both coding and
noncoding levels. In contrast to the NGS, the mass spectroscopy-
based techniques are used to identify and quantify proteins in
different subjects of interest [10]. The techniques, which are
based on reverse-phase protein array and stable isotope labeling
by amino acids in cell culture, are also another class of mass
spectroscopy-based techniques used to quantify the protein
molecules in the human genome [11]. All the different types of
technologies that uncover the human genome’s different omics
layers are provided in Table 1.

These integrated approaches have also resulted in the
development of several tools, resources and methods. These
developed platforms provide a framework for genomic data
integration, analysis, download, interpretation and visualiza-
tion. Several review articles in the literature cover multidata
integration and highlighted the importance of the same. The
present review specifically lists the major single/multiomics
databases present in the literature, including the resources that
integrate data from various databases and data analysis servers
employing the multiomics data for prognostic and predictive
biomarkers identification. The major aim of this review article
is to provide the scientific community a holistic view of the
available resources for multiomics data integration and analysis
to improve cancer therapeutics. We will specifically focus on
the applicability of the available resources to understand the
complex nature of human cancer and in the identification of
various predictive and prognostic biomarkers. The schematic
representation of the overall methodology is in Figure 1.

Resources on cancer genomics

The multiomics techniques can generate the data from each
genomic hierarchy level ranging from genome to proteome.

The annotation of genes, proteins and regulatory elements
from various omics layers could serve as the basis for iden-
tifying disease-related outcomes. The data originated from
the same set of samples or across the human population
could help gain insight into the biological context of the
disease onset and progression. With the advent of sequencing
technologies, thousands of human genomes are sequenced.
This will lead to the generation of large voluminous data.
The generated multiomics data are thus stored in several
dedicated repositories. There is a list of publicly available
cancer-specific data resources in the literature. These cancer-
specific online repositories of multiomics could play a key role in
broadening our understanding of diseases related pathways and
mechanisms. These web repositories could also provide a way
to measure the altered molecular pattern of different molecular
processes within the same cancer type or in a pan-cancer
way. The data from these repositories allow the researchers to
reinvestigate the data to gain meaningful insight into the disease
etiology. For simplicity, we have categorized the different cancer-
specific repositories into two types—primary and secondary.
The Primary repositories are the storehouse of data generated
from sequencing platforms and manual curation. The primary
repositories contain information on multiomics aspects of
cancer genome includes large genome consortium such as The
Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO),
International Cancer Genome Consortium (ICGC), Encyclopedia
of the Non-coding Elements of Human Genome (ENCODE),
Sequence Read Archive (SRA), Cancer Cell Line Encyclopedia,
etc. The GEO catalogs the data on gene expression profiling of
the patients, genome methylation, genome variation and protein
profiling studies of several diseases including cancer [12]. The
TCGA is another such repository that provides comprehensive
information on genomic, epigenomic, transcriptomics, clinical
and proteomics information on 33 major human cancer types.
The ICGC is another major cancer-specific data repository
that stores both open access and controlled dataset on
human cancer types. This portal offers various tools for data
analysis and integration like simple gene-oriented queries and
integrates genomic and clinical data. The key features of this
resource include the comprehensiveness, high resolution, and
quality of the data obtained from matched nontumor tissue,
generation of complementary catalogs of transcriptomic and
epigenomic datasets from the same tumors [13]. The SRA
was established by the International Nucleotide Sequence
Database Collaboration with the primary goals of including the
storage of raw sequencing data, the alignment information from
multiple high-throughput sequencing platforms and making
this sequencing data easily available to the scientific community
[14]. Besides the genomic and sequencing information, several
other primary resources are also there in the literature. These
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Figure 1. Schematic description of the overall methodology and workflow of the review article.

resources are manually curated by the team of experts and
provide extensive information regarding cancer phenotype
and targeted therapeutic approaches. The Catalog of Somatic
Mutation in Cancer (COSMIC) [15] is one such significant
effort that provides somatic mutation information on almost
every human gene. COSMIC is developed by many experts
and contains manually curated information from 27 724
research publications, TCGA and ICGC [15]. The latest release
of COSMIC (v92, release 27 august 2020) catalogs 37 288 077
coding mutations, 9 215 470 coding region variants, 15 642 672
noncoding region variants, 19 369 fusion transcripts, 1 207 190
copy number variants, 7 930 489 methylated CpG. In addition
to the COSMIC, several other groups worldwide also develop
some manually curated repositories that provide comprehen-
sive information on cancer progression genomics. Notable
examples include CancerPDF—a repository of cancer-related
endogenous peptides that are detected in the human biofluids;
colorectal cancer biomarker database—catalogs 870 biomarker
information from 1115 research articles; Liverome—holds 143
liver cancer-specific signatures containing 6927 genes extracted
from 98 research publications. Further, in the recent past,
circular RNAs emerged as noninvasive biomarker candidates
among variety of diseases including cancer. Hence, various
web resources, such as CircNet, CircRiC ExoRBase, Circ2Disease,
Circ2Traits, LncRNADisease 2.0, MiOncoCirc, etc. were developed
to maintain the extensive information for CircRNAs and their
association with multiomics layers and diseases [16-22]. These
CircRNA resources and tools for the identification these CircRNA
discussed in more details by Zheng et al. elsewhere [23, 24].
In addition to the primary resources such as GDC Data portal,
ICGC ArrayExpress, UCSC Genome Browser, T3CA, LinkedOmics,
COSMIC, GDSC, CCLE, etc. [25-40], there exist several secondary

resources like Liverome, CancerPDF, CancerPPD, CBD, cBio-
Portal, HCMDB, CancerDR, SomamiR, OncoMX, ResMarkerDB,
CancerLivER, HCCdb, DBMHCC, ApoCanD, etc. [41-56], in the
literature. Secondary resources are developed by extracting
and integrating data from the primary resources. These
include—human cancer metastasis database, CancerEnD,
CancerDR, CancerMIRNome, OncoMX, etc. The complete list
of primary and secondary cancer-related resources with
their brief description, URLs, Pro/Cons with references is in
Supplementary Table S1.

Biomarkers tools for cancer research

Multiomics platforms are generating an enormous amount of
data. The integration of data to mine the biologically meaningful
insight is the major challenge faced by the researchers and clini-
cians. In this regard, a growing number of researchers worldwide
continuously integrated the various omics dataset to get a better
insight into the disease etiology [57-66]. This data integration
approach can uncover the hidden dynamic properties of cancer
cells that otherwise would be impossible with the static or single
omics data analysis. In the past, several tools are developed by
the researchers by employing the multiomics data integration
approach, which finds use in indentifying the cancer-driving
genes [67], predicting the survival of patients, predicting the
success rate of cancer immunotherapy [68, 69]. The researchers
have extensively utilized the omics profile of cancer patients
to identify potential biomarkers for diagnosis and prognosis
purposes [57, 70]. Many of these studies also developed web-
tools based on identified omics biomarkers to predict the sta-
tus of the tumor. Several other powerful bioinformatics tools
like KMPlotter, Gene Expression Profiling Interactive Analysis,
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Oncomine, etc. are also developed by the researchers. These
resources were developed to investigate the publicly available
omics datasets for advancement in oncology research. However,
some of these tools are developed on single omics datasets and
often require a tedious registration process. Thus overcoming
such challenges is necessary for improving the cancer therapeu-
tics strategy. In this regard, Yan et al. developed a web-resource
for lung cancer patients’ survival prediction by integrating 5245
samples from TCGA, GEO and other publicly available sources
[71]. Dong et al. also developed a tool, OSgbm [72], by integrating
datasets from seven resources, namely TCGA, GEO and Chinese
cancer databases. The researchers have also integrated data
in one of the studies to unravel the hidden heterogeneity of
the cancer types [60], thus providing subtype-specific biomark-
ers. The data from all these reports highlight that integrat-
ing multiomics data can help improve therapeutics for cancer
management.

In addition to single gene-based biomarkers, researchers
also developed multigene-based biomarkers tools to capture
more tumor heterogeneity. In one such study, Kaur et al. have
identified a set of three genes based biomarkers (CLEC1B,
PRC1 and FCN3) that have high diagnostic potential with more
than 90% accuracy employing various statistical and machine
learning algorithms. The developed machine learning model has
been implemented in a web-tool, i.e. HCCPred [63]. CancerCSP
is another web-tool that can classify the patients into the early
and late stages of renal cell carcinoma based on the expression
profile of 64 and 38 genes [73]. Kumar et al. in one study,
developed the tool by integrating a dataset from TCGA and other
literature studies to find the prognostic potential of enhancer
elements for 18 cancer types [4]. These online free-to-use tools
and web-resources help clinicians and researchers discover
several prognostic and diagnostic markers that are ultimately
beneficial for cancer research. The tools developed further can
be classified into Diagnostic and Prognostic biomarker tools [e.g.
OSluca, OSgbm, CancerCSP, CancerLSP, CancerUBM, BBCancer,
OScc, OSbrca, PROGgene, SurvExpress, PrognoScan, GSCAlite,
CaPSSA, MEXPRESS, PROGmiR, SurvMicro, OncoLnC, TCPAv3.0,
TRGAted [71-90]) or Predictive (e.g. CancerDP, CancerTOPE,
SCLC-CellMiner [91-93]) biomarker tools. The tools that can
help identify these biomarkers are of great significance in
guiding the clinical treatment, elucidation of the mechanism
of tumorigenesis, and offers an opportunity to clinicians for
targeted therapy. Supplementary Table S2 provides a brief
description of diagnostic, prognostic and predictive tools used
in cancer research.

Miscellaneous tools for cancer research

The publically available resources such as TCGA, GEO provides
a huge amount of data on genomics, proteomics, etc. Thus,
these data provide unparalleled opportunities for researchers
and clinicians to explore gene function analysis, biological
mechanism discussion and target identification. Analysis of
the generated omics dataset provides several biomarkers
in clinical use and unravels the cancer genome’s hidden
targets. Analyzing and integrating such complex datasets is
also a tedious task and demands a bioinformatics expertise
person. Researchers without strong computing potential and
bioinformatics background often find difficulty in analyzing
and interpreting the data. Thus, if genomic studies’ full potential
has to be utilized in clinics, there should some alternative tools
for easy data visualization, interpretation and analysis. Using

such tools, researchers who do not belong to the bioinformatics
class can also ask specific questions and generate a testable
hypothesis. Thus to aid the scientific community, several
comprehensive analysis tools, i.e., GEPIA2, SCUDO, ChIP-Array2,
DeAnnCNYV, Sniplay3, varFish, Oviz-Bio, Cancer3D 2.0, FireBrowse
[94-102] are also developed by the researchers. The complex
genomic analysis can be done by simple clicks using these
servers and tools. Supplementary Table S3 catalogs some of the
available resources and tools used for easy data visualization
and analysis.

Comparative analysis of tools and algorithms
for cancer research

The rapid growth in the multiomics data opens a platform
for researchers in aggregating, integrating and analysis of
the data to drive novel targets and advances in clinical
research. Thus to improve biomedical knowledge, teams of
research scientists with diverse backgrounds have worked
hard to develop advanced methods and tools for efficient
data management, handling and interpretation. Given the
wide spectrum of developed tools (refers to Supplementary
Table S1-S3) with the varying approach in data integration,
feature selection, clustering, data interpretation, and analysis,
a detailed comparison of developed tools in the context of
the same data set could be very useful for benchmarking the
performance and evaluation of their suitability in the clinics.
Several studies are available in the literature which performed
the comparison of the clustering and feature selection methods
used in these tools for multiomics data integration [103, 104].
The researchers in one study suggest that SNF is the most
robust feature selection step among the other available such
as MCCA, MFA, MCIA and JIVE [104]. Their observation is based
on the comparative analysis of all the methods based on
three real datasets with a varying number of parameters such
as feature selection, noise ratio, signal strength and training
parameters. Another study performed a comparative analysis of
available methods for clustering analysis. This study compared
the clustering performance of six available methods on the
simulated datasets and conclude that BCC (Bayesian approach)
showed the highest accuracy [104]. The BCC methods can
correctly identify data specific structures across the datasets.
The study by Rappoport et al. also compared the six clustering
algorithms such as LRAcluster, K-means, SNF, multiNMS,
PINSPlus, iclusterBayes, spectral clustering, rMKL-LPP and MCCA
on the cancer multiomics dataset from the TCGA. They conclude
that for the clustering of multiomics gene expression, miRNA
expression, and DNA methylation the rMKL-LPP, MCCA and
multiNMF outperformed other available algorithms in terms
of clinical subtype-specific enrichment [105]. Several gene
expression-based computational tools have been developed
for the prediction of survival outcomes in the patients. Each
tool utilizes different inclusion and exclusion criteria with little
or no overlap between the patient cohorts. This will leads to
irreproducibility among the results of the published studies and
thus limit their use in clinical settings. Altman et al. in one study
developed an intuitive algorithm PCM-SABRE that compares
and benchmarks the gene expression-based survival prediction
using various machine learning algorithms [106]. This study
showcased the power of different feature selection and machine
learning algorithms to improve the existing expression-based
prediction models. PNN and LR machine learning algorithms
perform better than other algorithms and the ANOVA feature
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Figure 2. Depiction of workflow and application of multiomics data integration in cancer research.

selection method achieved higher accuracy as compared to
other feature selection methods for breast cancer survival
prediction. Overall, a large number of studies compared and
benchmarked different omics-related tools and algorithms.
However, it is not wrong to say that the data and features
employed in any model are the major deciding and driving forces
leading to the better performance of one algorithm and tool over
another.

Application of tools in current cancer research

The computational tools which integrate, analyze and derive
useful insights from the available genomic or public datasets
are continuously being released in the literature. Herein, we
discuss some potential applications of the available computa-
tional tools with their technical details. The tools discussed
are organized based on their applicability in addressing the
biological question of interest. For the sake of simplicity, we have
categorized the biological question of interest in two broad cat-
egories—(I) identification of disease subtype-specific features,
(I1) identification of disease-specific biomarkers for diagnostic,
prognostic and therapeutic purposes. A brief description of the
applicability of the developed computation tools is provided
in Figure 2.

Identification of disease subtype-specific features

Cancer is a heterogeneous disease in terms of disease etiology
and progression [106]. It shows a remarkable degree of hetero-

geneity at various levels like intratumor, intertumor and also
at the patient level. Several other factors such as environment,
lifestyle also contributes to the varying degree of disease het-
erogeneity. Thus, it is of utmost importance to identify the
disease subtype-specific biomarkers that may be beneficial in
suggesting and designing interventions for patients in a more
personalized and subtype-specific manner [106]. PINSPlus is
one such available method that can classify the patients into
different subtypes using multiomics data [107]. PINSPlus uses
the similarity index-based algorithm to cluster the patients into
different disease subtypes. Based on the hierarchical structure
search, it can also be used for the identification of subgroups
within the subtypes. For example, PINPlus was applied on 34
omic data and two METABRIC data for breast cancer study for
the identification of subtype-specific differences in survival of
the patients. The tool was able to identify the subtypes for 27
datasets out of 36 with a significant P-value for the difference in
survival among the subtypes. Several similar studies depict the
importance of different multiomics tools in the advancement of
disease subtyping.

Identification of disease-specific biomarkers
for diagnostic, prognostic and therapeutic purposes

Biomarkers are often considered as a gold standard molecular
footprint for revealing the condition of living cells. They can pro-
vide accurate information on the connected pathway and flow
of information in a cell and thus have the potential to reveal dis-
ease etiology. The multiomics data integration approach unveils
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an innovative platform for the identification of disease etiology
specific biomarkers, which can further be used in clinics for
diagnostic, prognostic and therapeutic purposes. NetICS is one
such method available for the integration of multiomics data and
prioritization of cancer disease-specific genes [108]. This tool is
developed by integrating mutation, miRNA, mRNA and CNV data
on five different cancer types available in TCGA. The developed
method was able to identify the frequent and infrequent altered
genes and thus can also be used in the ranking of genes in terms
of their diagnostic potential. CancerSPP is another freely avail-
able computational tool for the prediction of the progression of
cancer by conducting the integrative analysis of multiomics data
namely mRNA, miRNA and methylation status of skin cutaneous
melanoma patients from the TCGA. Various machine learn-
ing techniques have been employed for the development of a
computational pipeline that can classify samples into primary
and metastatic categories independently. In addition to gene-
based markers, researchers also developed computational tools
for the risk stratification of colorectal patients based on their
protein expression profiles [61]. The weight factor for each pro-
tein was taken into consideration for the development of the
prediction model to classify the patients into the various risk
groups. These tools can help in reducing the overall burden
of cancer deaths worldwide by acting as a platform to aid in
the timely diagnosis, better prognosis and suggesting advanced
personalized disease-specific therapeutic options.

Future direction

Cancer exploits different mechanisms to alter the normal
physiology and cellular processes to their benefit to activate
various immune escape pathways leading to cancer onset,
progression and therapeutic failures. The decades of global
collaborative clinical and preclinical research significantly
advanced our knowledge regarding disease diagnosis, treatment
and management which resulted in improved outcomes in the
patients. This significant increase in patient care is driven by
rapid advancement in the field of genomics, bioinformatics,
sequencing and imaging technologies with properly established
electronic health records. The rapid increase in genomics
and related technological fields lead to the generation of an
enormous amount of data that is freely available in numerous
repositories and a large number of analytical tools exploit this
data to solve the particular problem of interest. The stored data
in specialized bioinformatics resources such as TCGA, ICGC,
COSMIC, ENCODE, MethyCancer have been continuously utilized
by researchers and clinicians for biomarker discovery. Resources
such as CanSAR, GDSC supports clinical cancer research in the
drug discovery process. Despite the importance of developed
tools, the shift from bench to bedside remains a challenging task.
One of the major challenges that are still needed to be resolved is
the heterogeneity of the tumor cells leading to varied responses
to anticarcinogen/therapy with a similar response. This obstacle
can be overcome by initiating the personnel genomics projects
in large human populations of different geographical locations.
This will helps in the decoding of the personalized mutational
fingerprints and molecular makeup of the cancer types. The
developed tools on such large-scale datasets can better mimic
the local and systemic tumor microenvironment and thus can
be utilized in better management of therapies. The prolonged
survival of cancer patients with checkpoint inhibitors and
immunotherapies are still restricted to only a minuscule set
of patients. The low survival among the patient is because
there is no definite biomarker that can recognize the patient

subset and can subsequently optimize the delivery and selection
process. To achieve long-term survival, a combination of drugs
targeting several molecular perturbations and cancer driver
mutations might be needed. There is a need for the development
of computational models that can help in predicting the drug
response by analyzing the patient genomic and mutational
profile in a more disease- and subtype-specific manner.
Also, advanced computational and statistical tools should be
developed which aims at better data management, integration
and analysis to establish a strong causal relationship between
clinical data, genomic discovery and overall patient care.

Conclusion

The advancement in omics technologies results in the genera-
tion of enormous data in the field of biomedical research. The
availability of such a vast amount of data provides an oppor-
tunity to investigate and derive significance from this data for
complex pathological conditions like cancer. Several resources
manage the multiomics data of cancer. One of the advantages
of multiomics data is that it can provide a holistic and broader
picture of cancer compared to the single omics layer. It can
help us identify better biomarkers for diagnosis, prognosis and
predicting the treatment with high precision. In this review, first,
we have provided an overview regarding multiomics data types,
including genomics, proteomics, transcriptomics, epigenomics
and metabolomics. Then, we provided a brief introduction to the
major web resources that manage multiomics data for cancer.
We divided resources into primary and secondary resources
based on the source of the data. Next, we provided an overview
of the methods and tools developed to explore and integrate
multiomics data. We listed various tools based on machine
learning, deep learning, survival analysis algorithms and differ-
ent packages employing multiomics data to identify biomarkers
for specific malignant conditions. Here, we divided these tools
based on applying the method, i.e. diagnostic, prognostic, pre-
dictive and precision medicine. We have tried to cover major
resources that can provide insight into the application of multi-
omics data in the biomarker discovery for cancer. The generated
multiomics data have dramatically improved our understanding
of cancer. However, the generated dataset adds another layer
of difficulty for researchers in integrating and interpreting the
data. The developed tools can assist clinicians and researchers
in developing biomarkers, predicting the response to therapy,
assessing risk scores, etc. This way, the developed tools help
clinicians design and guide therapy to the patients. However,
the developed tools also suffer from several limitations: integrat-
ing cancer tissue images, multinetwork model constructions,
genomic pathway and metabolite information, etc. Thus, they
need to be improved soon. After overcoming the above limita-
tions, we hope that the bioinformatics tools may open a new
avenue for biomarker discovery and better patient/healthcare
management.

Key points

® With the advent of technology, there is an enormous
generation of multiomics data of patients including
genomics, proteomics, transcriptomics, epigenomics
and metabolomics.

® A number of web resources developed to manage this
vast amount of multiomics data for cancer samples.
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We split these resources into primary and secondary
resources based on the source of the data.

® A large number of studies identified potential omics
biomarker candidates for specific malignant condi-
tion by exploring and integrating multiomics data
of patients employing various machine learning,
deep learning techniques, and survival analysis algo-
rithms, etc.

® Various web-tools were developed to predict the
tumor status of the samples based on identified
omics biomarkers implementing different bioinfor-
matics approaches. We categorized these tools mainly
into four categories based on the application, i.e. diag-
nostic, prognostic, predictive and precision medicine.

® We have tried to cover major resources that can pro-
vide insight into the application of multiomics data
in the biomarker discovery for cancer. The gener-
ated multiomics data has dramatically improved our
understanding of cancer.

Supplementary data

Supplementary data are available online at http://bib.oxfordjou
rnals.org/.
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