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Abstract

In the current era, one of the major challenges is to manage the treatment of drug/antibiotic-resistant strains of bacteria. Phage therapy,
a century-old technique, may serve as an alternative to antibiotics in treating bacterial infections caused by drug-resistant strains of
bacteria. In this review, a systematic attempt has been made to summarize phage-based therapy in depth. This review has been divided
into the following two sections: general information and computer-aided phage therapy (CAPT). In the case of general information,
we cover the history of phage therapy, the mechanism of action, the status of phage-based products (approved and clinical trials) and
the challenges. This review emphasizes CAPT, where we have covered primary phage-associated resources, phage prediction methods
and pipelines. This review covers a wide range of databases and resources, including viral genomes and proteins, phage receptors,
host genomes of phages, phage–host interactions and lytic proteins. In the post-genomic era, identifying the most suitable phage for
lysing a drug-resistant strain of bacterium is crucial for developing alternate treatments for drug-resistant bacteria and this remains a
challenging problem. Thus, we compile all phage-associated prediction methods that include the prediction of phages for a bacterial
strain, the host for a phage and the identification of interacting phage–host pairs. Most of these methods have been developed using
machine learning and deep learning techniques. This review also discussed recent advances in the field of CAPT, where we briefly
describe computational tools available for predicting phage virions, the life cycle of phages and prophage identification. Finally, we
describe phage-based therapy’s advantages, challenges and opportunities.
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Introduction
With the discovery of penicillin in 1928 by Alexander Fleming,
the era of modern antibiotics started, which led to significant
achievements in controlling infections [1]. Several drug-resistant
bacterial strains have emerged in the last few decades, which
poses a global health and economic burden [2]. Due to the emer-
gence of multidrug-resistant bacteria, antibiotics’ effectiveness
has gradually decreased. In 2017, the WHO published a list of
pathogens on a global priority basis that includes 12 species of
bacteria based on their level of resistance and available thera-
pies [3]. Due to antimicrobial resistance, an estimated 10 million
people could die each year by 2050 [4]. The antibiotic discovery
process has slowed as the rate of antibiotic resistance rapidly
increases, indicating that the golden period of antibiotics may
have ended [5, 6]. Therefore, alternative treatment regimens are
needed, including a reappraisal of bacteriophage therapy [2]. Bac-
teriophages (phages) are viral predators that specifically target
bacteria and the most prevalent organisms in our environment,
and they can be crucial for preserving the microbial population
[7, 8]. In the current era of antibiotic resistance, phage therapy
is a rapidly growing effective treatment against emerging drug-
resistant bacterial strains [9, 10]. Currently, phage therapy is a

therapeutic alternative in treating various bacterial infections in
humans, animals and plants. Several clinical trials have been con-
ducted over the last few years to design phage-based therapy or
bacteriophage cocktails which could be used as a better treatment
against several diseases such as skin infections, gastrointestinal
disorders, cystic fibrosis, urinary tract infections (UTIs), bone and
joint infections [4, 11–13]. In addition, several phage products are
approved for targeting plant pathogens and food safety, such as
Agriphage and Biolyse_BP [14].

Moreover, due to current advancements in high-throughput
sequencing technologies, a massive amount of genomic and
metagenomic data is available for discovering novel therapeutic
phages. Identifying host-specific phages with a traditional
experimental approach is very tedious and time-consuming. A
plethora of computational methods and repositories have been
developed to identify putative host ranges and understand phage–
host interactions since predicting specific therapeutic phages is
crucial in the success or failure of phage therapy [15]. In this
review, we have compiled computational repositories and tools for
predicting phage–host sequences and studying their interactions.
In addition, we have incorporated various tools for phage-virion
protein identification, phage’s lifecycle and prophage prediction.
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Figure 1. Overall structure of review.

Notably, these computational pathways are beneficial in creating
innovative candidate therapy-ready phages. Moreover, to gain the
future implication of phage therapy as an alternative treatment,
we have summarized approved commercialized phage products
and successful experimental clinical trials conducted to design
new phage therapies for treating drug-resistant infections. The
structure of our review is depicted in Figure 1.

History of phage therapy
Phage therapy is not new; it has a history older than antibiotics
and is divided into four periods, i.e. early passion, critical ratio-
nalism, phase of decline and withdrawal, and recent interest [16],
as depicted in Figure 2. The first foundation step in the history of
phage therapy was taken in 1896 by a British bacteriologist, Ernest
Hanbury Hankin. He demonstrated that the cultures of cholera-
inducing bacteria were obtained from Indian rivers (Ganga and
Yamuna) being destroyed by a biological entity [17]. In 1917, Felix
d’He’relle coined the term ‘bacteriophage’ from the Greek word
phage, meaning to devour, meaning ‘bacterium eater’ [10] and
made the first attempt to treat chickens infected with Salmonella
gallinarum using phages. After the discovery of bacteriophages,
they were successfully used to treat other bacterial infections;
during 1921–1930, bacteriophages were used to control cholera
and plague epidemics in India, Africa, China and Vietnam [18].
After that, the first commercial anti-cholera phage-based drug
was introduced in 1968. In addition, Bruynoghe and Maisin show
the clinical use of phage to treat wound infections such as cuta-
neous furuncles caused by Staphylococcus species [18]. Despite
phage therapy’s successful and positive results, the nature of
phages always remains controversial [16, 19]. With the discovery
and widespread success of antibiotics, phage products were with-
drawn from the market [20, 21].

However, this success of antibiotics has not continued for
a very long time due to the development of resistance which
causes significant clinical problems [22, 23]. In the 2000s, human
trials of phages started [24], and the phage therapy gained global
recognition in 2016 after successfully treating a person suffering
from a resistant strain of Acinetobacter baumannii with intravenous
phage cocktails, which fully recovered from the coma. With this,
several clinical trials on phage therapy have been started and
used to treat infections in animals and plants. Various companies
commercialized phage and phage-based products in the market
[4, 10, 18, 25, 26].

Mechanism of phage infection
Bacteriophages are diverse entities that infect bacteria with more
than 1031 phages that were found in all-natural environments
[27]. Phages have a small morphological structure that consists
of a head, neck and tail [28]. They have double or single-stranded
DNA/RNA genetic material that carries essential genes required
for their replication inside the host, while the function of 80%
of known genes is undefined [22, 29]. Phages have a narrow host
range and lack complete replisome; therefore, they rely entirely
on the host’s machinery to synthesize phage particles for their
propagation and survival [30, 31]. The phage infection process in
bacteria involves a multi-step pathway following the two most
found life cycles, i.e. lytic and lysogenic, as depicted in Figure 3.
First, phage adsorbs on a pore on the host cell surface with the
attachment to specific receptors via tail fibers; after that, they
inject their genetic material into the cell via translocation by
creating a pore on the host cell membrane [22]. Finally, replication
occurs in the lytic cycle after the injection of genetic material, and
the phage progeny is released by the rapid lysis of the infected
bacterial cell.
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Figure 2. History and trends of phage therapy.

In the lysogenic cycle, phages remain in a state of lysogeny
where they integrate their genetic material into the host genome
as a prophage or exist as plasmids in the host cell without killing
the host [2]. The genes necessary for lytic growth are switched off.
When environmental conditions persist, or in the case of stress
(such as nutritional stress and DNA damage), the prophage is
excised from the host genome and starts to follow a lytic cycle
[10]. Both types of phages in the environment are prominent;
however, temperate phages are inadvisable for therapeutic pur-
poses because of the lysogenic conversion through which bacteria
acquire new genetic traits, such as phage-encoding toxins that
can enhance their virulence [32]. The lysogeny genes are removed
with the advancement of genetic engineering from the temperate
phages. They can be used for therapy against bacterial infections
[33] caused by Clostridium diffificile [34] and Mycobacterium absces-
sus, for which no lytic phages have been discovered [35].

Computer-aided phage therapy
In silico frameworks for designing and developing phage-based
therapy for treating drug-resistant bacterial infections follow a
multi-step process that leverages multiple tools designed for dif-
ferent tasks. The primary requirement for designing such a frame-
work is the identification of candidate lytic phages and the target
bacterial strains for which an alternate treatment is required.
The choice of the phage is crucial for developing an effective
treatment. Additionally, one must determine whether a single
phage is intended to be employed or a cocktail of phages is to
be used. The selected phages must be capable of disrupting the
biofilm of the host cells and must undergo a lytic life cycle to
lyse the host cell. Several databases/resources and computational

frameworks have been developed for storing phage and host-
associated datasets and predicting phage, host and their inter-
actions. These bioinformatic tools facilitate the researchers to
identify complete and partial phage and bacterial host genome
sequences from metagenome samples obtained from advanced
sequencing techniques. In addition, genome annotation tools are
used for the functional annotation of phage isolates [36–40]. After
the selection of candidate phages and bacteria, their interac-
tions are to be predicted to determine the host ranges for the
candidate phages, identifying the bacterial strains that can be
infected by the chosen phages via penetration of the genome in
the host cell via different mechanisms. Experimental verification
of such interactions is very accurate, but such techniques are
not scalable as each interaction requires specific conditions for
the maintenance and storage of phages and bacteria. In silico
tools help bridge the gap between performance and throughput
and facilitate the researchers to determine host ranges, attach-
ment mechanisms and receptor specificity. A wide range of com-
putational tools have been developed which employ sequence
similarities, machine-learning/deep-learning models or both to
predict phage-host interactions leveraging features like genome
sequences and protein sequences [41–45]. Additionally, phage
virion proteins (PVPs) and phage life cycles play a crucial role in
influencing the phage–host infection process. Thus, the prediction
and study of such methods are necessary to develop a deeper
understanding of the interactions between phages and their hosts.

Databases and repositories
In the past, due to the development of next-generation sequenc-
ing technologies, there was a huge increment in genomic data.
Over the last few years, several repositories have been developed
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Figure 3. Overall mechanism of phage infection in host cell.

for studying phages based on their structural and functional
properties, and their relationships and interactions have been
created. Genomic sequences are the fundamental feature used in
designing tools for phage-based therapy. Platforms like National
Center for Biotechnology Information (NCBI) (https://www.ncbi.
nlm.nih.gov/) and European Nucleotide Archive (ENA) (https://
www.ebi.ac.uk/ena/browser/home) maintain databases con-
taining information about genome sequences and taxonomies.
KEGG virus (https://www.genome.jp/kegg/genome/virus.html)
is a resource repository that includes information on viruses
and cellular organisms from an evolutionary perspective and
has a collection of databases dealing with genomes, biological
pathways, diseases, drugs and chemical substances. Information
about gene regulation in phages is also interesting for multiple
reasons. It helps in novel downstream tasks such as designing
better phages for biotechnological purposes [46, 47] and bionan-
otechnology applications [48, 49].

phiSITE [50] is a database of gene regulation in bacteriophages
that contains about 700 experimentally confirmed or predicted
regulatory elements like promoters, operators, terminators and
attachment sites from 32 bacteriophages. The data have been col-
lected manually from multiple sources like EMBL, UniProt, NCBI
taxonomy database, NCBI genome, ICTVdb and Pubmed Central.
It provides full search and graph visualization of phage genomes.
Phage lytic proteins serve as a novel alternative class of enzyme-
based antibiotics called enzybiotics. PhReD [51] and PhaLP [52]
are open-access databases that serve as repositories for phage
receptors and lytic proteins, respectively. In addition, prophages
have been widely used to study the interactions between phages

and bacterial hosts. PhageWeb [53] is a computational tool for
identifying prophages and consists of a collection of prophage
sequences. Another important target for the observation and
study of phages is the human intestines. The human intestines are
the most diverse microhabitats comprising an eclectic mixture of
organisms. The Gut Phage Database (GPD) [54] addresses these
shortcomings. GPD is a database of 142 809 gut phage genomes
that characterize phage–host relationships that are experimen-
tally validated is pivotal in devising effective phage-based med-
ication. Several platforms and databases contain information
regarding such interactions as Microbe Versus Phage [55], Virus-
Host DB [56], PhagesDB [57], VHRdb [58], etc. These databases
primarily contain pairs of phage and microbes that denote an
interaction. In Table 1, we collected databases/resources that can
be utilized to develop novel methods for predicting viral host
ranges and classifying phage–host interactions and serve as the
backbone for devising phage-based therapies.

In silico tools for predicting phage candidates
Bacteriophages constitute a significant portion of living organ-
isms. Therefore, studying their interactions and influence on
other organisms is vital in developing a deeper understanding of
biological phenomena. In the past, several computational tools
were created to assay phages’ multiple properties and relation-
ships. These can be categorized into the following five categories:
(i) phage identification tools, (ii) bacteriophage host prediction, (iii)
phage-virion-protein identification, (iv) phage life cycle prediction
and (v) prophage identification tools.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac574/6961791 by Indraprastha Institute of Inform

ation Technology user on 19 January 2026

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.genome.jp/kegg/genome/virus.html


Advances in the field of phage-based therapy | 5

Table 1. List of phage-related repositories and resources in public domain

Name (reference) Year Description (link)

ENA [59] 2010 An archive of genomic and nucleotide sequencing information https://www.ebi.ac.uk/
ena/browser/home

phiSITE [50] 2010 Database of gene regulation in bacteriophages http://www.phisite.org/main/
NCBI Virus [60] 2014 Contain genome sequence of bacteriophages https://www.ncbi.nlm.nih.gov/labs/virus/

vssi/
VirusMentha [61] 2014 A resource that includes tools to analyze selected viral proteins https://virusmentha.

uniroma2.it/about.php
PhReD∗ [51] 2016 Repository phage receptors http://www.ualberta.ca/phred
Virus-Host DB [56] 2016 Contains genome of hosts and phage and their interaction https://www.genome.jp/

virushostdb/
Actinobacteriophage Database (PhagesDB) [57] 2017 Genome of phages that infect bacterial hosts (Actinobacteria) https://phagesdb.org/
PhageWeb database∗ [53] 2018 Compilation of sequences of prophages http://computationalbiology.ufpa.br/phageweb/

database.php
Microbe Versus Phage (MVP) [55] 2018 A phage-microbe interaction database http://mvp.medgenius.info/
Viruses.STRING [62] 2018 Protein–protein interaction for virus-virus and virus-host. https://apps.cytoscape.org/

apps/stringapp
PhaLP [52] 2021 A database of phage lytic proteins https://www.phalp.org/
Gut Phage Database (GPD) [54] 2021 A database of Gut phage genomes obtained from metagenome https://www.sanger.ac.uk/

data/gut-phage-database/
Viral Host Range database (VHRdb) [58] 2021 Viruses infecting archaea, bacteria, and eukaryotes https://viralhostrangedb.pasteur.

cloud/about/
mMGE [63] 2021 A database for human metagenomics, plasmids and phages https://mgedb.comp-sysbio.

org
KEGG Virus [64] 2021 It contains information about viruses and cellular organisms https://www.genome.jp/

kegg/genome/virus.html

Phage identification tools
Metagenomic sequencing has enabled fast and efficient sequenc-
ing of prokaryotic cells and viruses from metagenomic bins.
However, studying the properties of phages in isolation remains
challenging due to the inability of proper isolation, preservation
and purification techniques for phages. Identifying phage
genomes from these mixed sequences is crucial for developing
most downstream phage analyses. In the last two decades,
several computational tools have been developed for predicting
phages. As listed in Table 2, DeepVirFinder [65] uses deep
CNNs models to identify genomic motifs from viral sequences
for making predictions to distinguish phage and prokaryotic
genomes. MetaPhinder [40] predicts genomic fragments of phages
using whole genome sequences and is capable of distinguishing
bacteria and prophages. They demonstrate that their approach
outperforms BLAST and other methods based on comparing
k-mers. Metaviral SPAdes [66] utilize the variations in coverage
depth between viruses and bacteria chromosomes for identifying
viral genomes in metagenomic assembles. Phage_finder [39]
and PhaMers [67] help identify phage samples in metagenomic
samples. Seeker [68] uses deep learning models for the alignment-
free identification of phage sequences. VIBRANT [69] uses a
hybrid model comprising machine learning and protein simi-
larity. DeePhage distinguishes between virulent and temperate
phage-derived lines in metavirome data with a deep learning
approach. VirMiner [36], virMine [70] and VirFinder [38] are
tools that are used for phage contig prediction in metagenomic
samples. VirSorter [37] and VirSorter2 [71] are tools used to
detect viral signals (DNA/RNA) in microbial sequence data.
VirSorter uses probabilistic models in both reference-dependent
and independent manner to maximize novel virus detection,
whereas VirSorter2 uses genome-informed database advances
with multiple automatic classifiers for detecting the range of
viruses.

Bacteriophage host prediction
Increased bacterial resistance to antibiotics is a global healthcare
challenge that urges alternative treatment classes. Determining
the bacterial host against bacteriophage is a quintessential step
to leveraging the bactericidal effects of phages and developing
phage-based medications. The lack of annotated hosts for phages
sequenced from metagenomic bins poses the problem of iden-
tifying putative bacterial hosts for the bacteriophages. There-
fore, developing computational methods for phage–host interac-
tion prediction has been an important topic of interest among
researchers. The interaction of a phage with its putative host is
highly intricate. It is governed by ecological co-evolutionary pro-
cesses wherein both organisms compete in a constant arms race
for survival. The host evolves and adapts continuously to prevent
viral infection and the phage in response, evolving to sustain
its growth. Numerous studies developed methods for predicting
phage–host interactions by using these features. Broadly these
methods can be categorized into three categories, i.e. alignment
based on sequence similarity [41,91,96], alignment-free methods
[42–44,97], and integrated approaches and others [45,86,93,98,99]
as represented in Table 2.

Phage-virion-protein identification
Phage virions are composed of proteins that contain genetic mate-
rial (DNA or RNA), which are responsible for binding to the surface
of the bacterial host to enable the phage to insert its genome
into the cell [100]. Specific virion proteins are responsible for suc-
cessful infection, and subsequent cell lyses. Therefore, identifying
PVPs is pivotal in understanding the interactions between phages
and host bacteria for developing phage-based antibacterial med-
ications. Several computational tools have been developed to aid
the process of identification and classification of virion proteins,
like PVP-SVM [101], PVPred-SCM [102], PhageWeb [103] PhaNNs
[104] (Table 3). Most of these tools employ machine learning and
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Table 2. List of computational tools for identification of phage, bacterial hosts and interacting phage–host pairs

Name (reference) Year Description (link)

Phage identification tools
Virsortera [37] 2015 Prediction of viral signals using microbial data https://de.iplantcollaborative.org/de/
PhaMers [67] 2017 Screening of novel bacteriophage from hot springs https://github.com/jondeaton/PhaMers
VirFinder [38] 2017 Virtual screening of viral sequences from metagenomic data https://github.com/jessieren/VirFinder
VirusSeeker [72] 2017 Pipeline for virus identification http://pathology.wustl.edu/virusseeker/index.htm
VirNet [73] 2018 Identification of viral reads in NGS data of metagenomes https://github.com/alyosama/virnet
MARVEL [74] 2018 Prediction of bacteriophage sequences in metagenomic bins https://github.com/LaboratorioBioinformatica/

MARVEL
ViraMiner [75] 2019 Prediction of viral genome using human samples https://github.com/NeuroCSUT/ViraMiner
VirMine [70] 2019 Detection of viral sequences using metagenomic samples https://github.com/putonti/virMine
Seeker [68] 2020 Deep-learning approach for identification of bacteriophage https://seeker.pythonanywhere.com/predict/
DeepVirFinder [65] 2020 Identification of viruses using metagenomic data https://github.com/jessieren/DeepVirFinder
Virsorter2 [71] 2021 Detect viral signals in various DNA/RNA viruses https://bitbucket.org/MAVERICLab/virsorter2/src/master/

Prediction of phage-specific hosts
HostPhindera [44] 2016 Prediction of bacterial hosts of phages https://cge.cbs.dtu.dk/services/HostPhinder/
WIsH [43] 2017 Identification of prokaryotic hosts using phage contigs https://github.com/soedinglab/wish
Viral Host Predictor [76] 2018 Predicting reservoir hosts using evolutionary information https://bioinformatics.cvr.ac.uk/software/viral-host-

predictor/
Host Taxon Predictor
(HTP) [77]

2018 Prediction of taxon of host of newly discovered phages https://github.com/wojciech-galan/viruses_classifier

PHERI [78] 2020 Pipeline for phage host exploration https://github.com/andynet/pheri
Virus Host Predict [79] 2020 Prediction of host taxonomic information using viral genome https://github.com/youngfran/virus_host_predict
vHulk [80] 2020 Deep learning method for bacteriophage host prediction https://github.com/LaboratorioBioinformatica/vHULK
HoPhagea [81] 2021 A tool for the identification of host from phage fragments data http://cqb.pku.edu.cn/ZhuLab/HoPhage/data/
HostG [82] 2021 A tool predict hosts of prokaryotic viruses https://github.com/KennthShang/HostG
CrisprOpenDB [83] 2021 Bacterial host predictions using CRISPR spacer streamlining https://github.com/edzuf/CrisprOpenDB
VPF-Class [84] 2021 Prediction of taxonomic class and host of phages https://github.com/biocom-uib/vpf-tools
PHIST [85] 2021 Prokaryotic host prediction using metagenomic viral sequences https://github.com/refresh-bio/phist
Bacteriophage-Host
Prediction [86]

2021 Bacteriophage–host prediction from receptor-binding proteins https://github.com/dimiboeckaerts/
BacteriophageHostPrediction

PHP [87] 2021 Prokaryotic virus host prediction tool https://github.com/congyulu-bioinfo/PHP
RaFAH [41] 2021 Viruses of bacteria and archaea prediction method https://sourceforge.net/projects/rafah/

Prediction of phage–host interaction pairs
ILMF-VH [88] 2019 Predicting virus–host association https://github.com/liudan111/ILMF-VH
PredPHI [89] 2020 Identification of bacteriophage–host interaction https://github.com/xialab-ahu/PredPHI
VirHostMatcher-Net [45] 2020 Prediction of virus–prokaryote interactions https://github.com/WeiliWw/VirHostMatcher-Net
DeepVHPPI [90] 2021 Prediction of virus–host interactions for novel viral sequences https://github.com/QData/DeepVHPPI
SpacePHARER [91] 2021 Phage-host interactions via prediction of phage genomes https://github.com/soedinglab/spacepharer
PHIAF [92] 2022 Prediction of phage–host interactions with GAN-based data https://github.com/BioMedicalBigDataMiningLab/

PHIAF
PHISDetector [93] 2022 In silico detection of phage–host interaction signals http://www.microbiome-bigdata.com/PHISDetector/
CHERRY [94] 2022 Virus–prokaryotic host interactions prediction tool https://github.com/KennthShang/CHERRY
PhageTB [95] 2022 Ensemble approach for predicting phage–host interactions https://webs.iiitd.edu.in/raghava/phagetb/

aCurrently not working.

deep learning models for identifying virion proteins, and some
tools use a combination of base models to develop ensemble
learning models.

Phage life cycle prediction
Bacteriophages need to infect host bacterial cells to reproduce
and carry out their life functions. The infection and reproduction
cycles of phages are denoted as the life cycle of phage. Phages
primarily exhibit two life cycles: lytic (or the virulent cycle),
wherein they burst and kill their host cell, and lysogenic (or
the temperate cycle), where they take over the host cell without
killing it. Identifying the life cycle type exhibited by a phage
is a necessary step when choosing phages for therapeutic use.
Phages undergoing a lytic cycle can destroy the bacterial cells
upon infection, while the ones that experience a lysogenic cycle
remain dormant. These lysogenic (or temperate) phages are also

responsible for horizontal gene transfer [114] and can transfer
undesirable features like antibiotic resistance into the population.
A few computational tools have been developed for the predic-
tion of the life cycles of phages. For instance, PhageAI [115] is
a tool containing information about more than 10 000 phages
and their life cycles. It builds on a linear SVM classifier using
nucleotide sequence embeddings based on the Word2vec skip-
gram model for predicting the phage life cycle (https://phage.
ai/). Phage Classification Tool Set (PHACTS [116]) is another tool
developed for predicting phage life cycles. PHACTS uses a sim-
ilarity search algorithm to construct a training set of phages
described by their proteomes with annotated life cycles and then
trains a machine learning classifier for making predictions (http://
www.phantome.org/PHACTS/). BACterioPHage LIfestyle Predictor
(BACPHLIP [117]) uses conserved protein domains within a phage
genome for the prediction of the life cycle of phages (https://
github.com/adamhockenberry/bacphlip).
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https://github.com/jessieren/DeepVirFinder
https://bitbucket.org/MAVERICLab/virsorter2/src/master/
https://cge.cbs.dtu.dk/services/HostPhinder/
https://github.com/soedinglab/wish
https://bioinformatics.cvr.ac.uk/software/viral-host-predictor/
https://bioinformatics.cvr.ac.uk/software/viral-host-predictor/
https://github.com/wojciech-galan/viruses_classifier
https://github.com/andynet/pheri
https://github.com/youngfran/virus_host_predict
https://github.com/LaboratorioBioinformatica/vHULK
http://cqb.pku.edu.cn/ZhuLab/HoPhage/data/
https://github.com/KennthShang/HostG
https://github.com/edzuf/CrisprOpenDB
https://github.com/biocom-uib/vpf-tools
https://github.com/refresh-bio/phist
https://github.com/dimiboeckaerts/BacteriophageHostPrediction
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Table 3. List of computational tools developed for predicting phage virion proteins

Name (reference) Year Description (link)

iVIREONSa [105] 2012 Deep learning-based models to classify viral structural proteins http://vdm.sdsu.edu/ivireons
PBVPa [106] 2015 An ensemble tool that uses hybrid feature for prediction of phage virions http://pbvp.weka.cc/
PHPred2.0 [107] 2018 Prediction of phage proteins and their subcellular localizations http://lin-group.cn/server/PHPred2.0/
PVP-SVM [101] 2018 Support vector machine-based PVP predictor http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
PVPred [108] 2018 Identification of bacteriophage virion proteins http://lin-group.cn/server/PVPred
PhagePreda [103] 2018 A tool for predicting phage virion proteins using Naïve Bayes. http://bigroup.uestc.edu.cn/bacteriophage
Pred-BVP-Unb [109] 2020 Identification of phage virion proteins within a vast volume of proteins. https://github.com/Muhammad-Arif-

NUST/BVP_Pred_Unb
PVPred-SCM [102] 2020 A scoring card method to identify phage virion proteins http://camt.pythonanywhere.com/PVPred-SCM
Meta-iPVP [110] 2020 Sequence-based meta-predictor to identify phage virion proteins http://camt.pythonanywhere.com/Meta-iPVP
PhANNs [104] 2020 Classification of phage structural proteins http://edwards.sdsu.edu/phanns
iPVP-MCV [111] 2021 Identification of phage virion proteins using an ensemble model https://github.com/taigangliu/iPVP-MCV
VirionFinder [112] 2021 Prediction of complete and partial prokaryote virus virion proteins. https://github.com/zhenchengfang/

VirionFinder
SCORPION [113] 2022 Machine learning-based approach for predicting phage virion proteins https://github.com/saeed344/SCORPION

aCurrently not working.

Table 4. Computational resources developed for identifying prophage or phage sequences in bacterial genomes

Name (reference) Year Description (link)

Phage_finder [39] 2006 Identification and classification of prophage http://phage-finder.sourceforge.net/
Prophindera [119] 2008 Prediction of prophage in prokaryotic genomes http://aclame.ulb.ac.be/prophinder
PHAST [120] 2011 Annotation and graphically mapping of prophage http://phast.wishartlab.com/
PhiSpy [121] 2012 Prediction of prophages by ranking genomic regions https://sourceforge.net/projects/phispy/
PHASTER [122] 2016 An updated version of PHAST https://phaster.ca/
PhageWeb [53] 2018 Homology based identification of phage regions http://computationalbiology.ufpa.br/phageweb/
Prophage Hunter [123] 2019 Virtual screening of prophages in bacterial genomes https://pro-hunter.bgi.com/
ProphET [124] 2019 Prophage sequence prediction tool https://github.com/jaumlrc/ProphET
Phigaro [125] 2020 Predict and annotate prophage https://github.com/bobeobibo/phigaro
Prophage Tracer [126] 2021 Precisely tracing prophages in prokaryotic genomes https://github.com/WangLab-SCSIO/Prophage_Tracer
PhageBoost [127] 2021 Machine learning based data mining for predicting prophage regions http://www.phageboost.dk
DEPhT [128] 2022 Prophage discovery tool https://pypi.org/project/depht/
DBSCAN-SWA [129] 2022 An integrated tool for rapid prophage detection https://github.com/HIT-ImmunologyLab/DBSCAN-SWA/

aCurrently not working.

Prophage identification tools
Prophages are integrated phage forms in host bacterial genomes
that contribute to interstrain genetic variability. The presence of
genes associated with viruses is reported to be prophage encoded
as the integration of phages in the bacterial genomes leads to
the transfer of genes and their spread in the bacterial population
[118]. The identification of prophages enables the study of the
interaction between phages and their hosts effectively and helps
characterize hosts of related phages. Thus, they can be used
in developing new phage-based therapies. Numerous tools have
been developed that utilize alignment-based methods, homology
searches, machine learning and deep learning models to identify
prophages in bacterial genomes (Table 4). The complete overview
of the bioinformatics pipeline for designing phage therapy is
shown in Figure 4.

Clinical usage of phage-based therapy
Phage therapy for systematic use in clinical medicine from indi-
vidual case experiences requires rigorous clinical trials. These
trials need extensive knowledge of translational endpoints to help
better define the critical aspects of phage therapy, including the
route of administration, dosage, pharmacokinetics, pharmacody-
namics, clinical conditions that benefit from phage therapy and
optimal use in combination with antibiotics [30]. Phages have
been used to treat clinical conditions, including UTIs, skin and

surgical wound infections, dysentery, external otitis, septicemia
and typhoid fever [18]. Over the last few years, several clinical tri-
als have been carried out, but only a few are currently completed
[4, 130, 131] (Table 5). The first phase I safety clinical trial, regard-
ing the oral administration of Escherichia coli phage T4 in drinking
water, was carried out in 2005, which showed neither release
of antibodies nor phages in patient serum, suggesting that oral
phage administration is safe [132]. In 2006, a case study in the UK
was reported where phage suspension (approximately 103 PFU of
phage in 0.2 ml of saline) was used to cure Pseudomonas aeroginosa
infection of the transplanted skin after the failure of antibiotics
[16781080]. In the USA, the first FDA-approved phase I clinical trial
was conducted in 2009 to evaluate the safety of the phage cocktail
(‘WPP-201’) developed by Intraltix Inc. for the treatment of venous
leg ulcers [24]. In 2013, the largest randomized controlled phase
I/II clinical trial, ‘PhagoBurn’, with good manufacturing practices
and good clinical practices, was conducted in Europe to treat
patients with burn wound infections using a cocktail of 12 lytic
phages [133, 134]. From 2009 to 2011, a randomized, double-blind,
placebo-controlled study was conducted in collaboration with
Nestle (Switerzland) and Dhaka Hospital, Bangladesh, to test the
safety and efficacy of oral administration of T4-like phage cocktail
in children with acute bacterial diarrhea [135].

Moreover, in 2016, a study showed the use of Staphylococcal
phage Sb-1 to treat diabetes and staph-infected toe wounds in
nine patients, and the wounds were healed by the middle of
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Figure 4. Schematic representation of bioinformatics tools for designing phage therapy.

Table 5. A list of clinical trials of phage therapy with brief description

National clinical
trial number

Year Disease or condition Phage used for treatment Age group

NCT00001540 1996 HIV infections Bcateriophage phi X174 Child, adult, older adult
NCT00089180 2004 Skin carcinoma Liposomal T4N5 Lotion 19 years and older
NCT00663091 2006 Venous leg ulcers WPP-201 bacteriophage mixture 16 years and older
NCT00814151 2008 Bacteremia and

staphylococcal infections
MicroPhage S. aureus/MSSA/MRSA Blood
Culture test (Protoype)

18 years and older

NCT01184339 2009 Bacteremia MicroPhage S. aureus/MSSA/MRSA Blood
Culture test

18 years and older

NCT01818206 2012 Cystic fibrosis Cocktail of 10 bacteriophages 6 years and older
NCT03269617 2016 Gastrointestinal disorders Bacteriophage mixture 18 years to 65 years
NCT02757755 2016 Healthy adults AB-SA01 (bacteriophage cocktail targeting

Staphylococcus)
18 years to 60 years

NCT03140085 2017 Urinary tract infections PYO phage and antibiotics 18 years and older
NCT0451221 2018 Mild gastrointestinal

symptoms
Bifidobacterium probiotic and PreforPro 18 years to 65 years

NCT04191148 2019 Urinary tract infections LBP-EC01 18 years and older
NCT04737876 2020 Healthy adults BX002-A (cocktail against Klebsiella pneumonia) 18 years to 65 years

the seventh week of the phage application [136]. Not only single
phages but also phage cocktails have been used to treat bacterial
infections. A case report on a 61-year-old man with acute kidney
injury and elevated serum creatinine levels was treated with a
purified phage cocktail (BFC1), where his symptoms disappeared
and his kidney function recovered. Blood culture showed no fur-
ther bacterial growth [137]. Overall outcomes from these clinical
trials are that there are no or fewer side effects of phage therapy,
as concluded from animal pre-clinical studies, which require high

phage titers, and their efficacy depends on the type of infection.
More recently, several clinical trials have been registered on the
web server (https://clinicaltrials.gov/) and summarized in Table 5.

Pros and cons of phage-based therapy
Phage therapy has advantages over conventional antibiotics
and has been reviewed extensively by Loc-Carrillo and Abedon
[138]. Several past studies reported several advantages and
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Table 6. Possible pros and cons of phage-based therapy

Pros Cons

‘Specificity’ binds to particular receptors of host cell. ‘Narrow host range’ not useful in case of early infection.
‘Bactericidal effect’ lyse the host cell after infection. ‘Immunogenicity’ elicits unintended immune response.
‘Minimum side effects’ no risk to normal microbiome. ‘Release of endotoxins’ lead to inflammatory responses.
‘Auto-dosage’ replication capability at the site of infection. ‘Lack of phage pharmacokinetic data’ administration route and dosage

form remain unclear.
‘Narrow potential to induce resistance’ co-evolution of phages and
bacteria.

‘Lack of clinical trials’ to evaluate the safety and efficacy.

‘Cost-effective treatment’ production and isolation of phages is of low
cost.

‘Knowledge barrier’ lack of comprehensive familiarity with phages in
treating diseases.

‘Biofilm clearance’ phages can penetrate and lyse biofilms. ‘Limit to intracellular pathogens’ invader pathogens are inaccessible by
phages.

‘Rapid discovery’ phages are abundant in the natural environment. ‘Neutralization’ inactivated by neutralized antibodies and removed by
mononuclear phagocyte system.

‘Ecologically friendly drugs’ phages possess no or low intrinsic toxicity. ‘Ethics and regulation of phage therapy’ no official safety
guidelines/protocols and regulatory framework.

disadvantages related to phage therapy. Phages show a narrow
antibacterial spectrum and bactericidal effects, are easy to
discover, are effective against resistant strains of pathogens, pose
no risk to the typical microbiome in the body, are effective against
biofilms and have a low level of toxicity. Cost-effective are some of
the pros of phage-based therapy [7, 9, 18, 23, 138–145]. Even though
phage therapy has recognizable advantages over conventional
antibiotic treatment, it still poses some drawbacks that need to
be addressed for its acceptance in modern clinical practice. For
example, phages are limited to intracellular pathogens and can
evoke immunogenicity due to the release of endotoxins, narrow
host range, lack of phage pharmacokinetic data and less public
awareness. Moreover, there are no well-established approval path-
ways and regulatory agencies compared to antibiotics. In order
to establish phage-based therapies, separate legal authorities
must be required to document rules and regulations to formulate
phage-based products. In addition, educational campaigns
should be conducted to create awareness among people of
the usefulness and acceptability of phages and phage-based
products [4, 18, 23, 131, 138, 146–156]. In this section, we have
reported several pros and cons of phage therapy, summarized in
Table 6.

Advantages of computer-aided methods in
phage therapy
Viruses are abundant and diverse. Due to advancements in high-
throughput sequencing technologies, an enormous amount of
viral genome sequencing data has been generated. The current
experimental methods for understanding phage biology during
host infection require a lot of time and resources. Computational
tools are necessary to extract meaningful information from phage
genomic data efficiently. The significant advantages of computer-
based methods over traditional approaches in phage therapy are
described as follows:

• The interaction of phages with the host is an essential step
in the development of the phage infection process, i.e. the
acquaintance of the host for the novel prokaryotic viruses
is essential to understand the dynamic relationship between
microbes. Experimental approaches, such as single-cell tag-
ging, have been used to characterize the host specificity
of phages [157]. However, these experimental methods are
expensive, tedious and time-consuming. Also, these methods

cannot keep pace with the exponential growth of sequenced
phages. Therefore, in the past, a number of computational
tools have been developed for predicting the phage–host
interactions for newly discovered phages [41,94].

• Lytic phages are generally preferred over temperate phages
while designing phage therapy. Therefore, identifying the
lifecycle of phages is essential for understanding their role in
the ecosystem and phage therapy. Conventional laboratory
techniques based on plaque clearance or turbidity were
used to identify the lifecycle of phages [158] though these
methods are impractical for the newly discovered phage
genomes [159]. In the past, researchers tried to develop
artificial intelligence-based methods (such as PHACTS [116],
BACPHILP [117], and PhageAI [115]) have been developed for
the prediction phage life cycle. However, there is a need to
develop more highly accurate bioinformatics methods to
identify the phage life cycle accurately.

• PVPs are essential in recognizing and binding to the host cell’s
receptors, leading to lyses after infection [100]. Identifying
and understanding the mechanism of PVPs are essential in
developing phage-based therapy. While traditional lab meth-
ods such as mass spectrophotometry and protein arrays are
well known for detecting and characterizing PVPs [160], these
methods are costly and require rigorous labor work. Conse-
quently, there is a need for computational tools to identify
PVPs correctly and to understand the mechanism of their
action.

• In phage therapy, it is necessary to know the host range
for our choice of therapeutic phages in order to enhance
their bactericidal effects. Laboratory experiments are the gold
standard for identifying host ranges but are limited to a small
number of virus and bacterial hosts that can be cultured.
At the same time, it becomes difficult for those challenging
to cultivate in lab conditions such as growth media and
temperature. These methods can also be scientifically chal-
lenging due to the absence of infection signs or inconclusive
[161]. Alternatively, the in silico methods require less time and
resources to identify the putative host range for the phages
[162].

• The computational pipeline will help the phage biologist
to explore the virosphere for a comprehensive analysis of
natural viral diversity, their interactions, lifestyle, and the
evolutionary arms race between phages and their hosts. In
addition, these methods will aid in prioritizing the candidate
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phages for experimental design and testing. Thus, directly
increasing the experimental efforts by proposing a hypothesis
that can be tested.

Discussion and conclusion
Phage therapy has been used to treat various human infections,
such as skin infections like wounds and burns, sepsis, eye, ear
or dental infections, gastrointestinal tract infections, UTIs and
respiratory diseases [163, 164]. Still, there are several knowledge
gaps in selecting phages for therapy, frequency and route of
administration, phage resistance, stability and storage of phage
products, dosage, and pharmacokinetic and pharmacodynamic
properties [165, 166]. A thorough investigation of immunological
responses in phage therapy is also required. However, recent
advancements in formulations, purification and phage genomics
contributed to the efficacy of phage therapy required to develop
phages or their products for treating infections [167]. Recently,
to control antimicrobial resistance, WHO has launched the ‘One
Health’ approach, an interdisciplinary idea that aims to improve
lives by integrating areas in human health, environmental health,
animal health and biodiversity [168] (https://onehealthinitiative.
com/). Phages, from their discovery, have been globally used to
treat diverse bacterial infections with great success; therefore,
they are considered a new alternative therapy under one health
approach to controlling pathogens in food, humans, plants and
animals to prevent the spread of antibiotic resistance in humans
and their overuse [169].

Phage cocktails instead of monophages have emerged as a new
approach to treat infections caused by multiple strains of bacteria
or whose causative agents have not been identified, as they
contain various phages of different specificity, thus increasing the
efficacy of phage therapy [170]. Not only the whole phage has
been used in therapy, but phages-derived proteins and enzymes
are also used, as the whole intact phage can be immunogenic
and elicit unwanted immune responses. However, the isolation of
these proteins is a challenge for developing therapy and is under
experimental trials to replace the intact phages. With the help
of genetic engineering and recombinant DNA technologies, the
therapeutic potential of phages could be increased dramatically
by expanding the host range of phages, preventing the transfer
of virulence genes, removing lysogens from temperate phages
to make them lytic and using in-therapy [10, 169]. Phage dis-
play is primarily used in designing phage-based vaccines and
antigen expression to provoke an immune response and cre-
ate immunological memory [171]. Phage adjuvants are a less
explored area, which enhances the phage activity or inhibits the
development of phage resistance with the use of adjuvants like
Dnase, which degrade extracellular DNA, preventing bacterial
aggregation, sugar alcohols such as sorbitol xylitol that inhibit
bacterial growth by accumulating into biofilms as toxic [172]
and with a synergistic antimicrobial that inhibits cell division or
growth of bacteria and high production of phage particles [173].
These combination therapies need more in vitro assessments and
experimental animal studies to understand the potential mech-
anism of interaction of phages with adjuvant and establish co-
dosing regimens [22]. With the advancement in sequencing tech-
nologies, several computational tools have been developed, with
their own advantages and disadvantages. Some of the machine-
learning-based tools are highly reliable and accurate, for exam-
ple, ‘PhageTB’, ‘BACPHLIP’ and ‘DBSCAN-SWA’ for the prediction
of phage–host interaction, lifecycle and prophage identification,
respectively.

Future prospects
The antibiotic-resistant era calls for an alternative approach
where phage therapy has been slowly taking place in novel
treatment methods for multidrug-resistant infections. The
comprehensive study of phage biology highlights its potential
application in various aspects of humankind. However, phages
have broad applications in therapeutics; still, several gaps need
to be resolved before phages can bloom in clinical practices,
including the screening of phages, effective dosage form, stable
phage products, the kinetics of phage action, etc. [31]. The lack
of well-controlled clinical trials, which is the most common
and necessary step, is a significant obstacle to the success of
phage therapy [174]. Most clinical trials are done with antibiotics,
making it challenging to identify phage therapy’s effectiveness
and safety evaluation alone [22]. Therefore, in the future, more
robust clinical trials with phages or phage products are required
for the emergence of phage therapy. Additionally, we need to
select the best phage candidates for the therapy, phage enzymes
or proteins and phage host ranges for an effective outcome.
With the increase of the genomic and bioinformatics era,
many computational approaches have been developed to select
suitable phages accurately and efficiently against pathogens
that are difficult to cultivate in lab conditions. Consequently,
computational methods provide perfect ways to inspect viral
diversity, phage–host interactions and lifecycle. However, these
methods have several computational challenges that need to be
overcome. The foremost issue that needs to be addressed is the
reference databases since the computational tools and methods
depend on the databases to obtain the datasets which somehow
biased toward viruses and their hosts that are culturable and well
studied [175].

Key Points

• The emergence of drug-resistant and extreme drug-
resistant strains of bacteria.

• Infections due to drug-resistant bacteria can be treated
using phage-based therapy.

• Databases contain sequences of phages and bacteria
that are growing at an exponential rate.

• Computer-aided phage therapy is essential to discover
novel and efficient phages.

• Compilation of phage-associated computational,
genomics and proteomics resources.
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